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Modern data is customarily of multimodal nature, and analysis tasks typically require sepa-
ration into the single components. Although a highly ill-posed problem, the morphological
difference of these components sometimes allow a very precise separation such as, for
instance, in neurobiological imaging a separation into spines (pointlike structures) and
dendrites (curvilinear structures). Recently, applied harmonic analysis introduced powerful
methodologies to achieve this task, exploiting specifically designed representation systems
in which the components are sparsely representable, combined with either performing �1
minimization or thresholding on the combined dictionary.
In this paper we provide a thorough theoretical study of the separation of a distributional
model situation of point- and curvilinear singularities exploiting a surprisingly simple
single-pass alternating thresholding method applied to the two complementary frames:
wavelets and curvelets. Utilizing the fact that the coefficients are clustered geometrically,
thereby exhibiting clustered/geometric sparsity in the chosen frames, we prove that at suffi-
ciently fine scales arbitrarily precise separation is possible. Even more surprising, it turns
out that the thresholding index sets converge to the wavefront sets of the point- and curvi-
linear singularities in phase space and that those wavefront sets are perfectly separated by
the thresholding procedure. Main ingredients of our analysis are the novel notion of cluster
coherence and clustered/geometric sparsity as well as a microlocal analysis viewpoint.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Along with the deluge of data we face today, it is not surprising that the complexity of such data is also increasing.
One instance of this phenomenon is the occurrence of multiple components, and hence, analyzing such data typically
involves a separation step. One most intriguing example comes from neurobiological imaging, where images of neurons
from Alzheimer infected brains are studied with the hope to detect specific artifacts of this disease. The prominent parts of
images of neurons are spines (pointlike structures) and dendrites (curvelike structures), which require separate analyzes, for
instance, counting the number of spines of a particular shape, and determining the thickness of dendrites [32,35].

From an educated viewpoint, it seems almost impossible to extract two images out of one image; the only possible
attack point being the morphological difference of the components. The new paradigm of sparsity, which has lately led
to some spectacular successes in solving such underdetermined systems, does provide a powerful means to explore this
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difference. The main sparsity-based approach towards solving such separation problems consists in carefully selecting two
representation systems, each one providing a sparse representation of one of the components and both being incoherent
with respect to the other – the encoding of the morphological difference –, followed by a procedure which generates
a sparse expansion in the dictionary combining the two representation systems. This intuitively automatically forces the
different components into the coefficients of the ‘correct’ representation system.

Browsing through the literature, the two main sparsity-based separation procedures can be identified to be �1 minimiza-
tion (see, e.g., [2,15–17,19–23,28,37–39,41]) and thresholding (see, e.g., [1,21,33,34]). For general papers on �1 minimization
techniques we refer to [7,9,14,13,12] and thresholding to [40] or the reference list in the beautiful survey paper [3]. While
�1 minimization has produced very strong theoretical results, thresholding is typically significantly harder to analyze due to
its iterative nature. However, thresholding algorithms are in general much faster than �1 minimization, which makes them
particularly attractive for the aforementioned neurobiological imaging application due to its large problem size.

In this paper we focus on thresholding as a separation technique for separating point- from curvelike structures using
radial wavelets and curvelets; in fact, we study the very simple technique of single-pass alternating thresholding, which
expands the image in wavelets, thresholds and reconstructs the point part, then expands the residual in curvelets, thresholds
and reconstructs the curve part. In this paper we aim for a fundamental mathematical understanding of the precision of
separation allowed by this thresholding method. Interestingly, our analysis requires the notions of cluster coherence and
clustered/geometrical sparsity, which were introduced in [18] by the author and Donoho in the context of analyzing �1
minimization as a separation methodology.

We find the results in our paper quite surprising in two ways. First, the thresholding procedure we consider is very
simple, and researchers on thresholding algorithms might at first sight dismiss such single-pass alternating thresholding
methodology. Therefore, it is intriguing to us, that we derive a quite similar perfect separation result (Theorem 1.1) as in our
paper [18], where �1 minimization as a separation technique was analyzed. Secondly, to our mind, it is even more surprising
that in Theorems 1.2 and 1.3 we derive even more satisfying results by showing that the thresholding index sets converge
to the wavefront sets of the point- and curvilinear singularities in phase space and that those wavefront sets are perfectly
separated by the thresholding procedure. This, we already suspected for �1 minimization to be true. However, we are not
aware of any analysis tools strong enough to derive these results for separation by �1 minimization.

1.1. A Geometric Separation Problem

Let us start by defining the following simple but clear model problem of geometric separation (compare also the problem
posted in [18]). Consider a ‘pointlike’ object P made of point singularities:

P =
P∑

i=1

|x − xi |−3/2. (1.1)

This object is smooth away from the P given points (xi: 1 � i � P ). Consider as well a ‘curvelike’ object C , a singularity
along a closed curve τ : [0,1] �→ R2:

C =
∫

δτ(t)(·)dt, (1.2)

where δx is the usual Dirac delta function located at x. The singularities underlying these two distributions are geometrically
quite different, but the exponent 3/2 is chosen so the energy distribution across scales is similar; if Ar denotes the annular
region r < |ξ | < 2r,∫

Ar

|P̂|2(ξ) � r,

∫
Ar

|Ĉ|2(ξ) � r, r → ∞.

This choice makes the components comparable as we go to finer scales; the ratio of energies is more or less independent
of scale. Separation is challenging at every scale.

Now assume that we observe the ‘Signal’

f = P + C,

however, the component distributions P and C are unknown to us.

Definition 1.1. The Geometric Separation Problem requires to recover P and C from knowledge only of f ; here P and C are
unknown to us, but obey (1.1), (1.2) and certain regularity conditions on the curve τ .

As there are two unknowns (P and C) and only one observation ( f ), the problem seems improperly posed. We develop
a principled, rational approach which provably solves the problem according to clearly stated standards.
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