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Operators Q j f = ∑
n∈Z〈 f , ϕ̃ jn〉ϕ jn are studied for a class of band-limited functions ϕ and

a wide class of tempered distributions ϕ̃. Convergence of Q j f to f as j → +∞ in the L2-
norm is proved under a very mild assumption on ϕ, ϕ̃, and the rate of convergence is equal
to the order of Strang–Fix condition for ϕ. To study convergence in Lp , p > 1, we assume
that there exists δ ∈ (0,1/2) such that ϕ̂̂̃ϕ = 1 a.e. on [−δ, δ], ϕ̂ = 0 a.e. on [l − δ, l + δ]
for all l ∈ Z \ {0}. For appropriate band-limited or compactly supported functions ϕ̃, the
estimate ‖ f − Q j f ‖p � Cωr( f ,2− j)L p , where ωr denotes the r-th modulus of continuity,
is obtained for arbitrary r ∈ N. For tempered distributions ϕ̃, we proved that Q j f tends
to f in the Lp-norm, p � 2, with an arbitrary large approximation order. In particular, for
some class of differential operators L, we consider ϕ̃ such that Q j f = ∑

n∈Z L f (2− j ·)(n)ϕ jn .
The corresponding wavelet frame-type expansions are found.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

The well-known sampling theorem (which is often called Kotel’nikov’s or Shannon’s theorem; [30,21,25,34] and
even [13]) states that

f (x) =
∑
n∈Z

f
(
2− jn

) sinπ(2 j x − n)

π(2 j x − n)
(1)

for any function f ∈ L2(R) whose Fourier transform is supported on [−2 j−1,2 j−1]. This formula is very useful for engineers.
It was just Kotel’nikov and Shannon who started to apply the formula for signal processing, respectively in 1933 and 1949.
Up to now, an overwhelming diversity of digital signal processing applications and devices are based on it and more than
successfully use it. Without sampling theorem it would be impossible to make use of Internet, make photos and videos. On
the other hand, (1) is an important and interesting formula for mathematicians. Recently Butzer with co-authors published
several papers [4–8], where they analyze sampling theorem and its applications and development. In particular, the equiva-
lence of sampling theorem to some other classical formulas was established for some classes of band-limited functions. Also
in [9,10] they studied a generalization of sampling decomposition replacing sinc-function by certain linear combinations of
B-splines. Linear summation methods of sampling expansion was studied by Kivinukk and Tamberg in [11,12].

From the point of view of wavelet theory, (2) is not a theorem, it is just an illustration for the Shannon MRA. Indeed,
the function ϕ(x) = sinπx

πx is a scaling function for this MRA, and a function f belongs to the sample space V j if and only if
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its Fourier transform is supported on [−2 j−1,2 j−1]. So, such a function f can be expanded as f = ∑
n∈Z〈 f ,ϕ jn〉ϕ jn , which

coincides with (1). Also, since {V j} j∈Z is an MRA, any f ∈ L2(R) can be represented as

f = lim
j→+∞

∑
n∈Z

〈 f ,ϕ jn〉ϕ jn. (2)

Moreover, (2) has an arbitrary large approximation order. This happens because the function ϕ(x) = sinπx
πx is band-limited,

a similar property cannot be valid for other natural classes of ϕ , in particular, for compactly supported ϕ . Some generaliza-
tions of this fact will be proved in the present paper.

We are going to consider band-limited functions ϕ with continuous or discontinuous Fourier transform and study the
corresponding scaling expansions (or quasi-projection operators)

∑
n∈Z〈 f , ϕ̃ jn〉ϕ jn , where ϕ̃ is, generally speaking, a tem-

pered distribution, in particular, ϕ̃ may be from the same class of band-limited functions.
The operators Q j f = ∑

n∈Z〈 f , ϕ̃ jn〉ϕ jn appear very often in the papers concerned with wavelets. Probably one of the first
appearing was in the well-known paper [14] by Cohen, Daubechies and Feauveau, where a method for the construction of
biorthogonal wavelet bases was developed. In this case the functions ϕ , ϕ̃ are in L2, refinable, and their integer translations
are biorthogonal. A method for the construction dual wavelet frames was developed in [27,28] by Ron and Shen, where
these operators also play an important role. In this case the integer translations of ϕ , ϕ̃ should not be biorthogonal, but the
function are still in L2 and refinable. Convergence and approximation properties of Q j , with compactly supported ϕ, ϕ̃ were
actively studied by many authors (see [1–3,18,22,19,20,26] and the references therein). Polynomial reproducibility plays a
vital role in these results. The most general results for L p-convergence were obtained by Jia in [20] who proved that

‖ f − Q j f ‖p � Cω
(

f ,2− j) ∀ f ∈ W k
p,

where ω denotes the modulus of continuity, under the assumptions: ϕ, ϕ̃ are compactly supported, ϕ ∈ L p , ϕ̃ ∈ Lq ,
1
p + 1

q = 1, and Q 0 reproduces polynomials of degree k − 1. The method based on polynomial reproducibility is not ap-
propriate for slowly decaying functions, such as functions ϕ whose Fourier transform is discontinuous. Another approach
was employed by Jetter and Zhou [16,17], and developed in [26], where Fourier transform technique was applied. The results
of the present paper are obtained with using the latter method which allows to work with a wide class of band-limited
functions ϕ and with a wide class of tempered distributions ϕ̃ .

The following notations will be used throughout the paper. The Schwartz class of functions defined on R is denoted by S ,
and S ′ is the dual space of S , i.e. the corresponding space of tempered distributions. We shall use the basic notion and facts
from distribution theory which can be found, e.g., in [15] or [33]. If f ∈ S , g ∈ S ′ , then 〈 f , g〉 := 〈g, f 〉 := g( f ). If f ∈ L p(R),
g ∈ Lq(R), 1

p + 1
q = 1, then 〈 f , g〉 := ∫

Rd f g . If f ∈ S ′ , then f̂ denotes its Fourier transform defined by 〈 f̂ , ĝ〉 = 〈 f , g〉, g ∈ S .
If f is a function defined on R, we set

f jk(x) := 2 j/2 f
(
2 jx + k

)
, j ∈ Z, k ∈ R.

If f ∈ S ′ , j ∈ Z, k ∈R, we define f jk by

〈 f jk, g〉 = 〈 f , g− j,−2− jk〉 ∀g ∈ S.

For convenience, sometimes we will write 2 j/2 f (2 j x + k) instead of f jk even for f ∈ S ′ .
If 〈 f , ϕ̃ jk〉 has meaning and the series

∑
k∈Z〈 f , ϕ̃ jk〉ϕ jk converges in some sense, we set

Q j(ϕ, ϕ̃, f ) = Q j( f ) :=
d∑

k∈Z
〈 f , ϕ̃ jk〉ϕ jk.

Let ϕ ∈ S ′ , its Fourier transform ϕ̂ be defined on R and n-times differentiable on Z. One says that the Strang–Fix
condition of order n holds for ϕ if

dkϕ̂

dξk
(l) = 0, k = 0, . . . ,n,

for all l ∈ Z, l 
= 0.
We use W n

p , 1 � p < ∞, n ∈ N, to denote the Sobolev space on R, i.e. the set of functions whose derivatives up to order
n are in L p(R), with usual Sobolev norm.

We use ∇t to denote the difference operator given by ∇t f = f (·)− f (·− t). The n-th modulus of continuity of a function
f in L p(R) is defined by

ωn( f ,h)L p = sup
|t|�h

∥∥∇n
t f

∥∥
p, h � 0.

If F is a 1-periodic function and F in L([0,1]), then F̂ (k) = ∫ 1
0 F (x)e−2π ikx dx is its k-th Fourier coefficient.
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