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Gabor functions, Gaussian wave packets, are optimally localized in time and frequency,
and thus in principle ideal as (frame) basis functions for a wavelet, windowed Fourier
or wavelet-packet transform for the detection of events in noisy signals or for data
compression. A major obstacle for their use is that a tailored efficient operator acting
on the transform coefficients for altering the width of the wave packets does not exist.
However, by virtue of a curious property of the Gabor functions it is possible to change
the width of the wave packets using just one-dimensional convolutions with very short
kernels. The cost of a wavelet-type transform based on the scheme presented below is
similar to that of a low order wavelet transform for a compact kernel and significantly less
than the algorithme à trous. The scheme can hence easily be employed for the processing
of signals in real time.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

For the detection of events, i.e., conspicuous or improbable amplitudes in an otherwise noisy signal it is necessary to re-
strict the attention to certain classes of events, since after all, every particular noise signal in itself is highly improbable and
yet insignificant since the improbability is balanced by the quantity of possible noise wave-forms. Assuming white Gaussian
background noise (which can often be achieved by suitable filtering), it is optimal for the purpose of event detection in the
spirit of Wiener filtering to form scalar products of the signal with the possible event wave-forms, which vary in width,
frequency and position. The set of scalar products with all test-functions can be regarded as a specific time–frequency
transform, the coefficients of which are to be scanned subsequently for amplitudes significantly above the noise level. For
constant width of the event wave-forms or test functions we arrive at a windowed Fourier transform [4]. Since for physical
signals the duration of an event and its frequency are likely caused by similar time scales, it is better to vary the width of
the test-functions proportional to their frequency, which yields a wavelet transform [5]. Lacking knowledge about the event
durations it may even be best to test varying widths, which results in the framework of the wavelet-packet transform [6].

In all cases but the windowed Fourier transform, it is necessary to compute scalar products of the signal with test func-
tions of increasing time duration or width, which in principle lends itself to the fast wavelet transform and the related
algorithms. These algorithms are based on the recursive separation of smooth and fine signal components by discrete low-
and high-pass filters. Unfortunately, the frequency resolution of the usual fast wavelet transforms [5] is fixed at one octave,
which is generally to coarse for signals such as those observed in plasma physics [7–10]. Additionally, the resolution deteri-
orates owing to the leakage between far apart octaves due to imperfect filtering before the subsampling step in the wavelet
transform. Apart from the frequency resolution, the spatial resolution is suboptimal, because it is above the Heisenberg limit
�ω�t < 1.
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On the other hand, it is frequently reasonable to assume the event generating process to be stationary over certain times
(the duration of the event), such as is typical, e.g., for natural sound, or in our case for certain types of events in magnetic
fusion devices. While exact stationarity would imply that the events consist of superpositions of harmonic functions, this is
only true in an approximate sense, due to the finite time duration. To construct acceptable wave-forms for events, one is
lead to search for wave functions of finite duration which are as close as possible to a harmonic, i.e., which have the smallest
possible width in frequency space. In that respect, the Gaussian wave packets are an optimum compromise between finite
duration and resemblance to a harmonic function in the sense that they have the minimum product of time and frequency
variance.

The corresponding windowed Fourier transform is the Gabor transform [11]. The definition of this transform can be
readily adapted to accommodate for a varying width of the test functions as required in the wavelet or wavelet-packet
transform. Unfortunately, a Gabor wavelet at given width is not the discrete sum of Gabor wavelets at different width,
which is the basis for the recursion of the fast wavelet transform algorithms. One can still apply a similar recursion, the
“algorithme à trous” [12], which is based on the approximate representation of increasingly wider wavelets by piecewise
polynomials. Somewhat depending on the required accuracy this requires however a rather significant amount of coefficients
per wavelet, rendering it much slower than the fast wavelet transform.

A more efficient method is to represent the Gabor functions of a particular width directly as approximate sums of
Gabor functions of another width, which in terms of numerical accuracy can in principle be optimally done by employing
the theory of frames [4]. The resulting coefficients allow the recursive computation of Gabor coefficients for increasing
width (the smoothing operation), starting from the smallest one, which allows the efficient computation of coefficient sets
corresponding to a multi-voice wavelet transform [4] or even a wavelet-packet transform [6].

An even faster method proposed in the present paper can however be obtained by capitalizing on an identity for discrete
convolutions of Gabor functions. For certain discrete values of the phase space density, this reduces the computational cost
for the smoothing operation to just a dozen floating point multiply-adds per real coefficient of the transform at a relative
precision of 10−4, which is in the range of the fast wavelet transform for low order wavelets.

The Balian–Low theorem [14] implies that the phase space density of Gabor functions to be used for any numerically
sound approach to Gabor-type transforms should be above the limiting density of (�ω�t)−1

crit = 2π , which is of course also
a condition for the algorithm to be discussed below. Interestingly, it turns out that there are discrete values of the phase
space density, which are particularly well suitable for a fast Gabor transform.

We start by defining the desired transform coefficients, followed by the start-up operation, which delivers the windowed
Fourier transform to undergo subsequent refinement in frequency and coarsening in time. In the following Section 4 the
central identity is derived, which relates any discrete convolution of Gabor functions in real space to a discrete convolution
of Gabor functions in frequency space. From this follow preferred vertex densities in time and frequency, which allow the
two convolutions to be directly represented. With these grids in the time–frequency plane, it is possible to convert the
discrete convolutions to exact convolutions (Section 6). The paper concludes by touching the reversion and stability of the
scheme.

2. Statement of the problem

As discussed in the introduction, given a discrete signal sk ∈ C, k ∈ Z we would like to compute the discrete Gabor
coefficients

ct,ω,σ :=
∑
j∈Z

s j g∗
σ ,ω( j − t), gσ ,ω(t) := g(t/σ )eiωt, g(x) := e−x2/2 (1)

for certain regular grids of points (k,ω) in the time–frequency plane and sets of widths σ . Due to the fast decay of the
Gabor functions, the series effectively can be regarded as a finite sum. (A severe general practical problem of the wavelet
transform turned out to be variable sampling rates of the signal sources, which require significantly higher complexity to
be satisfactorily transferred to Fourier space [15,16].)

To have a concrete problem in view, let us define a specific set of coefficient indices (Fig. 1) corresponding to a multi-
voice wavelet transform (for which also a real time application of the algorithm has been implemented [1–3]),

M(ν,�t0,σ0) := {
(t,ω,σ ) = ι(k, l,μ)

∣∣k ∈ Z, l ∈ {0, . . . , ν − 1}, μ ∈N0
}
, (2)

ι(k, l,μ) :=
((

k + 1

2

)
�tμ,

(
2ν − l − 1

2

)
�ωμ,σμ

)
, (3)

�ωμ = 2−μ�ω0, �tμ = 2μ�t0, σμ = 2μσ0, (4)

where k is the time index, l the frequency index within one octave, μ the octave index, and ν the number of voices per
octave. (The shifts by 1/2 can be understood looking at Fig. 1 by taking into account that it is preferable to have only
one class of vertices within an octave.) �ω0 and �t0 are free parameters and control the density of vertices in time and
frequency. Independent of the set of vertices in the time–frequency plane, σ0 is the with of a Gabor function at octave l = 0.
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