
A trustworthy, fault-tolerant and scalable self-configuration algorithm
for Organic Computing systems

Nizar Msadek ⇑, Rolf Kiefhaber, Theo Ungerer
Institute of Computer Science, University of Augsburg, 86135 Augsburg, Germany

a r t i c l e i n f o

Article history:
Received 19 September 2014
Received in revised form 27 April 2015
Accepted 1 July 2015
Available online 29 July 2015

Keywords:
Organic Computing
Self-configuration
Trust
Self-organizing systems
Contract Net Protocol

a b s t r a c t

The growing complexity of today’s computing systems requires a large amount of administration, which
poses a serious challenging task for manual administration. Therefore, new ways have to be found to
autonomously manage them. They should be characterized by so-called self-x properties such as
self-configuration, self-optimization, self-healing and self-protection. The autonomous assignment of
services to nodes in a distributed way is a crucial part for developing self-configuring systems. In this
paper, we introduce a self-configuration algorithm for Organic Computing systems, which aims on the
one hand to equally distribute the load of services on nodes as in a typical load balancing scenario and
on the other hand to assign services with different importance levels to nodes so that the more important
services are assigned to more trustworthy nodes. Furthermore, the proposed algorithm includes a fault
handling mechanism enabling the system to continue hosting services even in the presence of faults.
The evaluation indicates that the proposed approach is suitable for large scale and distributed systems.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

The Autonomic [1] and Organic Computing [2] Initiatives have
become an important research area for future information process-
ing systems. These initiatives consist of developing computer sys-
tems capable of so-called self-x properties (like self-configuration
[3,4], self-optimization [5,6], self-healing [7] and self-protection
[8]) to cope with the rapidly growing complexity of computing sys-
tems and to reduce the barriers that complexity poses to further
growth. These properties are achieved by constantly observing
the system and initiating autonomous reconfiguration if necessary.
An essential aspect that becomes particularly prominent in these
systems is trust. In this paper we adopt the definition of trust [9]
of the research unit OC-Trust of the German Research Foundation
(DFG). In their research, trust covers different facets, as, for exam-
ple, safety, reliability, credibility and usability. Our investigation
focuses on the reliability aspect. Furthermore, it is assumed that
a node can not realistically assess its own trust value because it
trusts itself fully. Therefore, the calculation of the trust value in this
work must be done with our former developed trust metrics [10]:

– Direct Trust is based on the own experiences a node has made
directly with an interaction partner node. Typically, trust values
are calculated by taking the mean or weighted mean of past
experiences.
– Reputation is based on the trust values of others that had
experiences with the interaction partner. Reputation is typically
collected if not enough or outdated own experiences exist.
– Confidence An estimation about the accuracy of node’s own
trust is required, before direct trust and reputation can be
aggregated. This estimation is done by calculating the confi-
dence of a node. If a node does have a direct trust value but is
not confident about its accuracy, it needs to include reputation
data as well.

When all the aforementioned values are obtained, a total trust
value tn based on the direct trust and reputation values can be cal-
culated using confidence to weight both parts against each other
(See Fig. 1). The value tn represents the current trust of node n
and will always range between 0 and 1. The value of 0 means that
n is not trustworthy at all while a value of 1 stands for complete
trust. This value can then be used to build trustworthy self-x prop-
erties. In this paper, we primarily focus on self-configuration and
note that our goal is to develop an autonomously scalable
self-configuration algorithm that works in a distributed manner.
The algorithm should enhance the self-configuration property of
OC systems with trust capabilities to enable building a reliable

http://dx.doi.org/10.1016/j.sysarc.2015.07.012
1383-7621/� 2015 Elsevier B.V. All rights reserved.

⇑ Corresponding author.
E-mail addresses: Msadek@informatik.uni-augsburg.de (N. Msadek), Kiefhaber@

informatik.uni-augsburg.de (R. Kiefhaber), Ungerer@informatik.uni-augsburg.de
(T. Ungerer).

Journal of Systems Architecture 61 (2015) 511–519

Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier .com/ locate /sysarc

http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysarc.2015.07.012&domain=pdf
http://dx.doi.org/10.1016/j.sysarc.2015.07.012
mailto:Msadek@informatik.uni-augsburg.de
mailto:Kiefhaber@informatik.uni-augsburg.de
mailto:Kiefhaber@informatik.uni-augsburg.de
mailto:Ungerer@informatik.uni-augsburg.de
http://dx.doi.org/10.1016/j.sysarc.2015.07.012
http://www.sciencedirect.com/science/journal/13837621
http://www.elsevier.com/locate/sysarc


system from unreliable components. This is achieved by improving
the availability of important services.

The remainder of this paper is structured as follows. Section 2
presents related work on self-configuration including a
comparison with our work. Our metrics for enabling a node to host
a specific service are presented in Section 3 together with the
self-configuration process. In Section 4, we incorporate coordina-
tion strategies as enhancement to the self-configuration process
in order to make it scalable. The results of the evaluations are
shown in Section 5. The paper closes with a conclusion and future
work in Section 6.

2. Related work

There are many sophisticated approaches to deal with the allo-
cation problem of services on nodes, either to achieve good load
balancing or to minimize energy consumption.

An approach that has become a standard by FIPA1 is the Contract
Net Protocol [11]. It consists of finding an agent that is the most suit-
able to provide a service. This approach is often adapted and applied
in many application domains, for example, manufacturing systems
[12], resource allocation in grids and sensor web environments
[13,14], as well as in hospitals [15], electronic marketplaces [16],
power distribution network restoration [17], etc. Our model is based
on the Contract Net Protocol, extended by trust. In this context, trust
serves as a mean to give nodes a clue about with which nodes to
cooperate.

Bittencourt et al. [18] presented an approach to schedule pro-
cesses composed of dependent services onto a grid. This approach
is implemented in the Xavantes grid middleware and arranges the
services in groups. It has the drawback of a central service distribu-
tion instance and therefore a single point of failure can occur.
Trumler et al. [19] described a scheduling algorithm for distribut-
ing services onto nodes based on social behavior. It is implemented
in the OCl middleware. In their model, nodes can calculate a QoS
for the services to decide which service is assigned to which node.
In this case only resource constraints are used to describe cases
when a service should be hosted depending on a specific hardware.
In contrast to our approach, this algorithm does not include trust
constraints.

In [20], Topcuoglu et al. presented an approach to consider the
priorities of tasks. They try to select tasks in order of their priorities
and to schedule them to the best machine that minimize their
finish time in an insertion based manner. This approach has been
shown to significantly improve the schedule computation time.
However, a disadvantage is that important tasks might run on
unreliable nodes and are prone to fail. Later, in [21], reliability

constraints were considered to find a homogeneous allocation of
the instances of services. Contrary to this work, our approach is
able to work with heterogeneous systems.

3. Trust-enhanced self-configuration

The approach of trust-enhanced self-configuration is a crucial
part for developing dependable and robust systems using self-x
properties. This consists mainly of finding a robust distribution of
services by including trust. The services are categorized into
important services with a high required trust, and non important
services with a low required trust. Important services are those,
which are necessary for the functionality of the entire system.
E.g., Bernard et al. [22] present a computing grid to solve computa-
tionally intensive problems. In their model, trust is incorporated to
enable nodes to form Trusted Communities (TCs). The manager,
that administrates these TCs is an example for an important
service, since its failure deteriorates the entire TC.

The goal is to maximize the availability of important services.
Therefore, it is necessary to assign important services to more
trustworthy nodes. Trust in this context is expressed by a trust
value based on previously developed trust metrics [10]. In addition
to trust, resource requirements (e.g., like CPU and memory) should
also be considered to balance the load of the nodes.

3.1. Metrics

The self-configuration focuses on assigning services with differ-
ent required trust levels to nodes which have different trust levels
so that more important services are assigned to more trustworthy
nodes. Furthermore, the overall utilization of resources in the
network should be well-balanced. Therefore, a metric is defined
to calculate a Quality of Service (QoStotal), i.e., the suitability of node
to host a specific service.

QoStotal ¼ ð1� aÞ � QoStrust þ a � QoSworkload: ð1Þ

The relationship between trust and workload can be set through
a 2 ½0;1�. If a ¼ 1, the QoStotal is only obtained by the current value
QoSworkload, i.e., the suitability of a node to host a specific service
with regard to its workload. If a ¼ 0, the QoStotal is decided only
by the actual QoStrust value, i.e., the suitability of a node to host a
specific service with regard to its trust value. A higher value a
favors QoSworkload over QoStrust .

– QoStrust indicates how well the trustworthiness of a node
fulfilled the required trust of a service. Fig. 2 visualizes formula
2 to calculate the QoStrust .
tn represents the current trust of node n calculated based on our
former developed trust metrics [10] and will always range
between 0 and 1. The value of 0 means that n is not trustworthy
at all while a value of 1 stands for complete trust. In this work, it
is assumed that tn is constant at a certain point in time.
However, tn is likely to change over time. This issue was
addressed in a subsequent publication of self-optimization [5].
The value ts represents the required trust value of service s
defined by the user according to the importance level of the ser-
vice. The value of 1 means that the service s is very important
and requires to be hosted only on trustworthy node while a
value of 0 stands for unimportant service and means that s
can tolerate to be hosted on untrustworthy node. If both values
are close enough then n has fulfilled the required trust value of
a service s. Close enough is defined by the threshold dopt (opti-
mal area). If the difference between tn and ts is more than dopt ,
then QoStrust will be gradually decreased until it reaches 0 at
tn � dtol (tolerance area). If ts is even beyond tn � dtol then the

Total Trust

Confidence

ReputationDirect Trust

Fig. 1. Aggregating direct trust with confidence and reputation to a total trust
value.

1 FIPA: Interaction Protocol Specifications - [Accessed: April 7, 2015] http://
www.fipa.org/specs/fipa00029/.

512 N. Msadek et al. / Journal of Systems Architecture 61 (2015) 511–519

http://www.fipa.org/specs/fipa00029/
http://www.fipa.org/specs/fipa00029/


Download English Version:

https://daneshyari.com/en/article/460530

Download Persian Version:

https://daneshyari.com/article/460530

Daneshyari.com

https://daneshyari.com/en/article/460530
https://daneshyari.com/article/460530
https://daneshyari.com

