Journal of Systems Architecture 61 (2015) 628-638

Journal of Systems Architecture

Contents lists available at ScienceDirect EMBEDDED
i

journal homepage: www.elsevier.com/locate/sysarc

Automatic task mapping and heterogeneity-aware fault tolerance: The
benefits for runtime optimization and application development

Mario Kicherer*, Wolfgang Karl

@ CrossMark

Karlsruhe Institute of Technology (KIT), Institute of Computer Engineering (ITEC), KaiserstrafSe 12, 76128 Karlsruhe, Germany

ARTICLE INFO

ABSTRACT

Article history:

Received 17 October 2014
Revised 5 October 2015

Accepted 6 October 2015
Available online 23 October 2015

Keywords:

Heterogeneous computing
Accelerators
Fault-tolerant systems
Runtime systems

The best mapping of a task to one or more processing units in a heterogeneous system depends on mul-
tiple variables. Several approaches based on runtime systems have been proposed that determine the best
mapping under given circumstances automatically. Some of them also consider dynamic events like varying
problem sizes or resource competition that may change the best mapping during application runtime but
only a few even consider that task execution may fail. While aging or overheating are well-known causes
for sudden faults, the ongoing miniaturization and the growing complexity of heterogeneous computing are
expected to create further threats for successful application execution. However, if properly incorporated,
heterogeneous systems also offer the opportunity to recover from different types of faults in hardware as
well as in software. In this work, we propose a combination of both topics, dynamic performance-oriented
task mapping and dependability, to leverage this opportunity. As we will show, this combination not only
enables tolerating faults in hardware and software with minor assistance of the developer, it also provides
benefits for application development itself and for application performance in case of faults due to a new

metric and automatic data management.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Accelerators like GPUs promise a significant performance im-
provement for certain problems compared to the calculation on a
general-purpose CPU. However, their actual benefit depends on mul-
tiple variables that may even change during application execution
like, e.g., the problem size. Therefore, runtime systems have been
introduced that dynamically evaluate these variables and determine
the best mapping of task to processing unit. Most of them follow an
empiric approach: they measure the execution time on the different
processing units and choose the one with the shortest time for fur-
ther executions of the task. During application execution, some of
them also consider changing problem sizes or resource competition
that may change the best processing unit for a task. However, except
of dealing with unresponsive processing units, such runtime systems
for task mapping in heterogeneous systems do not consider a failure
during task execution. The probability for faults raises, though. Indi-
vidual programming models and software stacks for the accelerators,
e.g., just-in-time compilers and runtime libraries, hardware-specific
optimizations as well as necessary data transfers to and from device
memory make the source code and the resulting application more

* Corresponding author. Tel.: +4972160846048.
E-mail addresses: kicherer@kit.edu (M. Kicherer), karl@kit.edu (W. Karl).

http://dx.doi.org/10.1016/j.sysarc.2015.10.001
1383-7621/© 2015 Elsevier B.V. All rights reserved.

complex. To make things worse, the susceptibility of the hardware
to faults is expected to increase as well: aging effects and charged
particles hitting conductor paths could become a considerable threat
for calculations due to shrinking feature sizes [12,25]. For example,
Haque and Pande created a test application for GPUs and tested over
50,000 systems. They discovered that “two-thirds of tested GPUs ex-
hibit a detectable, pattern-sensitive rate of memory soft errors” [10].
While a fault during the rendering of a frame in a game will be
hardly noticed, a fault during a timestep of a simulation might lead to
unusable results.

Consequently, application execution will depend on an increasing
number of processing units with decreasing reliability and on grow-
ing middleware layers that introduce further complexity on their
own. However, due to the available redundancy in terms of process-
ing units as well as task implementations for them, heterogeneous
systems also offer the opportunity to tolerate different kinds of faults
in hardware and in software. In order to leverage this opportunity,
different mechanisms are necessary, though.

In this work, we combine an existing runtime system for
performance-oriented task mapping with methods for fault tolerant
execution of tasks and show how both topics can benefit from each
other. For example, with the dynamic task mapping, malfunctioning
processing units can be easily avoided. However, if they only suffer
from a low rate of transient faults, their benefit for the application
compared to other processing units might still exceed the costs for


http://dx.doi.org/10.1016/j.sysarc.2015.10.001
http://www.ScienceDirect.com
http://www.elsevier.com/locate/sysarc
mailto:kicherer@kit.edu
mailto:karl@kit.edu
http://dx.doi.org/10.1016/j.sysarc.2015.10.001
http://dx.doi.org/10.1016/j.sysarc.2015.10.001

629 M. Kicherer, W. Karl/Journal of Systems Architecture 61 (2015) 628-638

recovering from a fault. As the runtime system already maintains a
profile for each processing unit, the fault rate can be stored as well
and used to create a new metric that determines their remaining ben-
efit. With this profile, also extraordinary long or short task executions
can be detected which can indicate an abort or a unit trapped in an
endless loop. Furthermore, due to the disjoint memory hierarchies
and the resulting expensive data transfers between host and acceler-
ator memories, automatic task mappers are often aware of the nec-
essary data for each task and transfer the data on demand according
to the chosen mapping. With a mechanism for automatic data man-
agement and the data copies in the different memories, the need to
create additional copies for a checkpoint can be avoided in certain
cases.

If dual-modular redundancy is used to detect corrupted results,
a following question with a considerable impact on performance is
where the results of the redundant calculations are compared. With
the approach in this work, the comparison can be handled like just
another regular task. The runtime system determines necessary data
transfers and the execution time for each mapping and chooses the
fastest one.

Besides efficient fault tolerance on end-user systems, the combi-
nation has also benefits for application development. When writing
a task implementation for an accelerator, developers usually have a
reference implementation for the CPU that they use to compare and
verify the results. Instead of manually comparing the results after
a complete application run, our combined approach can do this
automatically and for each intermediate result which reduces the
time until a developer becomes aware of errors. In case the results
differ, additional information about the difference can give valuable
hints for debugging the application. Therefore, we also propose
a graphical user interface that is called by the runtime system to
visualize the differences between the results and to enable further
analysis of the results.

Parts of this work are based on a prior publication [15]. Besides
a general revision, we contribute additional measurements and the
concept of the graphical user interface in this work.

The remainder of this paper is structured as follows: we will first
give an overview of related work and state of the art in Section 2.
In Section 3, we present the preliminary work that constitutes the
basis of our approach. Afterwards, we describe the major techniques
of our contribution. Performance and feasibility of this approach are
evaluated and compared in Section 5. Finally, Section 6 concludes the
paper giving further outlook.

2. Related work

Dependability is a wide research topic with a long history. In this
paper, we focus on work related to fault detection and tolerance in
modern systems. In the following, we start with the related work fo-
cusing on reliability for CPU computations.

Many research projects propose fine-grained on-chip redundancy
to decrease the costs for rollbacks and to benefit from underutilized
resources. Targeting general-purpose CPUs, several projects utilize
the features of modern processors, e.g., multiple cores and super-
scalar out-of-order pipelines [9,21,23].

Vera et al. [29] also propose a fine-grained redundancy approach
for CPUs. They argue that only 20 % of the instructions of a modern
architecture are responsible for more than 60 % of the total vulner-
ability. They introduce so-called selective replication of only certain
instructions and achieve a considerable fault coverage while intro-
ducing only minor overhead. A similar approach based on VLIW ar-
chitectures is introduced by Lee et al. [17] that exploits empty slots
for dynamic duplication.

As a software-based solution, Rebaudengo et al. present a source-
to-source compiler creating redundancy on the source-code level

[22]. Their efforts aim to detect transient faults causing data and
program-flow corruption.

Besides reducing the overhead of redundant execution, other
approaches try to avoid redundancy at all by detecting faults by other
light-weight indicators, such as symptoms like anomalous applica-
tion behavior detected by segmentation faults or an unusual rate of
branch mispredicts or cache misses [8]. Such detection mechanisms
save time, but come at the price of mispredictions or lower fault
coverage.

Besides symptom-based fault detection, arithmetic codes can be
used for validation [30]. Here, input values for calculations are modi-
fied in a way that the results can be validated using a checksum-like
mechanism.

In heterogeneous systems, work-intensive tasks of the application
are migrated to accelerators and only protecting the computations
on the CPU is not sufficient. Therefore, other projects present their
efforts to increase reliability of heterogeneous computing.

Takizawa et al. introduce CheCUDA that enables a checkpoint and
restart mechanism for CUDA kernels [27]. In combination with a tool
for CPU-bound application checkpointing, applications with CUDA
kernels can be restarted after a fault or even be migrated to another
host.

Kawai et al. introduced DS-CUDA that allows a normal CUDA ap-
plication to exploit accelerators on different nodes [13]. In addition,
they enable a similar transparent fault tolerant mechanism that ex-
ecutes a task on two GPUs, automatically compares the results and
restarts the task if necessary. In contrast to the contribution in this
work, they only focus on CUDA applications and devices and neither
consider other (fallback) devices nor do they keep statistics of the de-
vices in order to avoid failing devices.

For redundancy-based fault detection on GPUs, Dimitrov et al. [6]
introduce and evaluate three possible methods to efficiently execute
kernel code multiple times: simple duplication of kernel computa-
tions, interleaved kernel instructions, and exploiting unused thread-
level parallelism. A similar approach has been presented by Sabena
et al. where they compare different methods for redundant execution
on GPUs [24]. Like the CPU mechanisms, these efforts concentrate on
a single type of accelerator. However, our approach can be used with
arbitrary types of accelerators.

Another work targeting GPUs is from Fang et al. [7]. They in-
troduce their debugger-based fault injector GPU-Qin that enables
injections on instruction level. In their evaluation, they show that
there are different classes of applications that exhibit a simi-
lar low or high susceptibility for corrupted results or abortion of
execution.

Lee et al. present their extension of an OpenACC-compatible com-
piler that enables automatic comparison of results from CPU and GPU
calculations [18] and determines redundant or missing data transfers
for GPU calculations. Similar to this approach, they try to simplify the
development of applications for heterogeneous systems with auto-
matic fault detection. However, this work introduces generic mecha-
nisms that are not bound to specific hardware, programming models
or compilers and a graphical user interface that visualizes differences
to provide additional information for debugging.

Boyer et al. presented a dynamic load-balancing mechanism for
systems with non-uniform processing units [3]. In their work, they
profile the processing units with small chunks of the total work load
during application execution and thereby also detect unresponsive
units which are avoided in further runs.

Solutions for efficient task mapping is also of interest in multi- or
manycore systems [5,26]. For such systems, Zhang et al. presented a
mechanism for efficiently hiding faulty cores in a manycore processor
[31]. Their solution maintains a sane view of a logical topology that
does not only hide faulty cores but also improves the alignment of the
cores for minimal communication costs.


http://dx.doi.org/10.1016/j.sysarc.2015.10.001

Download English Version:

https://daneshyari.com/en/article/460542

Download Persian Version:

https://daneshyari.com/article/460542

Daneshyari.com


https://daneshyari.com/en/article/460542
https://daneshyari.com/article/460542
https://daneshyari.com

