
Journal of Systems Architecture 61 (2015) 646–658

Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier.com/locate/sysarc

Synthesis and optimization of image processing accelerators using

domain knowledge

Oliver Reiche∗, Konrad Häublein, Marc Reichenbach, Moritz Schmid, Frank Hannig,
Jürgen Teich, Dietmar Fey

Department of Computer Science, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Germany

a r t i c l e i n f o

Article history:

Received 30 April 2015

Revised 31 August 2015

Accepted 25 September 2015

Available online 9 October 2015

Keywords:

Hardware accelerators

Image processing

Synthesis

Code generation

a b s t r a c t

In the domain of image processing, often real-time constraints are required. In particular, in safety-critical

applications, timing is of utmost importance. A common approach to maintain real-time capabilities is to

offload computations to dedicated hardware accelerators, such as Field Programmable Gate Arrays (FPGAs).

Designing such architectures is per se already a challenging task, but finding the right design point between

achieving as much throughput as necessary while spending as few resources as possible is an even bigger

challenge.

To address this design challenge in the domain of image processing, several approaches have been pre-

sented that introduce an additional layer of abstraction between the developer and the actual target hard-

ware. One approach is to use a Domain-Specific Language (DSL) to generate highly optimized code for synthe-

sis by general purpose High-Level Synthesis (HLS) frameworks. Another approach is to instantiate a generic

VHDL IP-Core library for local imaging operators. Elevating the description of image algorithms to such a

higher abstraction level can significantly reduce the complexity for designing hardware accelerators target-

ing FPGAs. We provide a comparison of results for both approaches, a non-expert algorithm developer can

achieve. Furthermore, we present an automatic optimization process to give the algorithm developer even

more control over trading execution time for resource usage, that could be applied on top of both approaches.

To evaluate our optimization procedure, we compare the resulting FPGA accelerators to highly optimized

Graphics Processing Unit (GPU) implementations of several image filters relevant for close-to-sensor image

and video processing with stringent real-time constraints, such as in the automotive domain.

1. Introduction and related work

Today, image processing is a vital part of many application do-

mains. Typical examples include smart home or home automation,

where the building uses computer vision to recognize its inhabi-

tant and provide personalized comfort. Another well-known example

is medical imaging, where sensor noise reduction, visual enhance-

ment of radiographs, or the precise automatic detection of the pa-

tient’s position for radiant exposure is of high importance. Especially

in the automotive domain, computer vision is largely applied to im-

plement advanced driver assistance systems or even autonomous

driving. These computer vision algorithms are mostly based on

low-level image processing operations for feature extraction, such

as the Sobel operator for edge detection, the Harris corner detec-

∗ Corresponding author. Tel.: +49 91318567270.

E-mail addresses: oliver.reiche@cs.fau.de (O. Reiche),

konrad.haeublein@cs.fau.de (K. Häublein), marc.reichenbach@cs.fau.de

(M. Reichenbach), moritz.schmid@cs.fau.de (M. Schmid), hannig@cs.fau.de

(F. Hannig), teich@cs.fau.de (J. Teich), dietmar.fey@cs.fau.de (D. Fey).

tor, the census transform for detecting the optical flow, or simple

block matching to obtain a depth map for stereo vision, depicted in

Fig. 1.

In particular in the automotive domain, the questions arises where

to compute those image filters, as many different compute devices

are already integrated into modern cars. Depending on the filter’s

complexity, possible targets are an already existing Electronic Con-

trol Unit (ECU), a dedicated microcontroller solely for that purpose,

an embedded Central Processing Unit (CPU) or GPU, or even an FPGA.

The right choice depends on many factors, such as development ef-

fort, power efficiency, area constraints, and real-time capabilities,

which are most important for safety-critical systems.

In order to meet strict real-time constraints, the traditional way,

that an image sensor just captures image data and transfers it to a

processing system is often not sufficient. Rather, the data has to be

processed where the information is acquired, which means in or near

the image sensor. This leads to a new class of devices, called smart

cameras [1].

http://dx.doi.org/10.1016/j.sysarc.2015.09.004

© 2015 Elsevier B.V. All rights reserved.

1383-7621/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.sysarc.2015.09.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/sysarc
mailto:oliver.reiche@cs.fau.de
mailto:konrad.haeublein@cs.fau.de
mailto:marc.reichenbach@cs.fau.de
mailto:moritz.schmid@cs.fau.de
mailto:hannig@cs.fau.de
mailto:teich@cs.fau.de
mailto:dietmar.fey@cs.fau.de
http://dx.doi.org/10.1016/j.sysarc.2015.09.004
http://dx.doi.org/10.1016/j.sysarc.2015.09.004


(a) Edge detection (b) Corner detection (c) Optical flow (d) Stereo vision

Fig. 1. Typical image filters for feature detection in the automotive domain.

One of the first smart cameras was developed by the group of

Wolf [2]. They used a Trimedia CPU for image preprocessing tasks. To

achieve higher frame rates, they proposed to extensively use SIMD1

units. Other approaches, such as the one described in [3], use Digi-

tal Signal Processors (DSPs) to achieve a very high computing power.

Here, a scalable system that consists of up to 10 DSPs for parallel

processing is built to further increase performance. Even more cus-

tomized architectures have been developed. For example, in [4], a

dedicated integrated circuit was developed to speed up image pro-

cessing within smart cameras. A good survey of smart camera ap-

proaches is provided in [5].

With the emerging technology of FPGAs, these devices have been

quickly adopted for the design of smart camera systems. One big ad-

vantage is the number of parallel processing units, which can be in-

stantiated in FPGAs as 1D or 2D arrays since image processing al-

gorithms are in general well parallelizable [6]. Therefore, many new

architectures were created on the basis of FPGAs in the past years.

It is well-known that application-specific hardware might give

the highest performance and most efficient resource utilization. On

the contrary, application-specific development is a time consuming

and error prone task. One step towards mastering this challenge are

HLS tools, such as Calypto’s Catapult, NEC’s CyberWorkBench [7],

Impulse’s CoDeveloper C-to-FPGA tools, the Riverside Optimizing

Compiler for Configurable Computing (ROCCC 2.0) [8], or Vivado HLS

from Xilinx (formerly known as AutoPilot [9]). However, all these HLS

tools can be considered as general purpose frameworks and do not

make use of domain-specific knowledge for image processing. The

smart buffer concept of ROCCC is similar to our buffering approach

to exploit data reuse as much as possible. However, ROCCC does

not provide any domain-specific extensions, such as local operators

for image processing. Sometimes, HLS frameworks include specific

libraries to provide elemental architecture constructs and filtering

implementations, e.g., the partial port of the OpenCV library [10] for

Vivado HLS from Xilinx.

Schmid et al. proposed in [11] a pipeline design for range image

preprocessing on FPGAs. Here, several filters for compensating sensor

deficiencies (e.g., noise and pixel defects) were designed by using the

HLS framework PARO [12] and evaluated in an experimental setup,

consisting of a Microsoft Kinect and Xilinx Virtex-6 LX240T FPGA.

One of the first language approaches has been presented by Böhm

et al. with the single assignment programming language SA-C [13] for

targeting image processing applications on reconfigurable systems.

Instead of utilizing a DSL, algorithms are provided as an imperative

high-level C-based description.

Serot et al. introduced CAPH [14], an actor-based DSL for stream-

processing applications, described as networks of dataflow. They tar-

get smart camera system by generating SystemC and VHDL code be-

fore running the actual synthesis. Similarly, Janneck et al. propose

the actor language CAL [15] for FPGAs, as well as OpenDF [16], a

toolset based on the dataflow programming model, presented by

Bhattacharyya et al. All approaches have in common to focus on video

1 SIMD: Single Instruction, Multiple Data, according to M. Flynn’s taxonomy.

encoding applications with a strong orientation towards hardware

synthesis and ASIC architectures.

Another DSL for generating hardware accelerators is Darkroom

[17], introduced by Hegarty et al. They propose functional program-

ming to describe local image operators, which are translated into

line-buffered pipelines. Besides ASICs and FPGAs, also CPU imple-

mentations can be generated. Unlike Halide [18], which Darkroom

based on, targeting GPUs is not supported and the domain is re-

stricted to only static, fixed size windows, or stencils.

A further approach is taken by the HIPAcc framework [19] to gen-

erate code for FPGA HLS. HIPAcc is a publicly available framework2

for the automatic code generation of image processing algorithms for

GPU accelerators. Starting from a C++ embedded DSL, HIPAcc delivers

tailored code variants for different target architectures. In this way,

code generation offers true portability of programs and performance

across different platforms, and delivers increased productivity, as de-

velopers need not be concerned about implementation details, but

can focus on functionality [19]. Recently, HIPAcc was extended to also

be able to generate C++ code for the C-based HLS tool Vivado HLS [20],

even capable of handling complex multiresolution applications [21].

In contrast to applications for high-performance computing, hard-

ware accelerators for FPGAs may be subject to contrasting design

goals, such as a high processing speed or low use of the avail-

able hardware resources. A throughput optimized implementation

most likely consumes the highest amount of resources. Lowering the

throughput, however, provides an opportunity for resource sharing,

which may significantly reduce the amount of required resources. Es-

pecially for close-to-sensor processing, the resources available for the

accelerator implementation may be limited, yet at the same time, a

lower throughput might suffice. In this work, we therefore present

an automatic design space exploration and design optimization pro-

cedure, which can incrementally refine a hardware implementation

to achieve a specific design goal.

The contributions we present in this work can be summarized as

follows:

• A comparison of two abstract domain-specific approaches for the

fast generation of FPGA implementations for local image opera-

tors.

• An optimization feedback loop that could be applied on top of

both approaches to meet certain design constraints.

• An analysis of resource savings due to the optimization process for

image filters, relevant to close-to-sensor image and video process-

ing with stringent requirements (e.g., imaging and computer vi-

sion algorithms used in advanced driver assistance systems), com-

pared with the achievable throughput of embedded and server-

grade GPUs.

The remainder of this work is organized as follows. First, we

highlight the domain of image processing with local operators in

Section 2, before introducing both approaches in detail in Sections 3

and 4. The applied optimization loop, the optimization heuristics,

and the reasoning for their design are presented in Section 5.

2 http://hipacc-lang.org .

647 O. Reiche et al. / Journal of Systems Architecture 61 (2015) 646–658

http://hipacc-lang.org
http://dx.doi.org/10.1016/j.sysarc.2015.09.004


Download English Version:

https://daneshyari.com/en/article/460544

Download Persian Version:

https://daneshyari.com/article/460544

Daneshyari.com

https://daneshyari.com/en/article/460544
https://daneshyari.com/article/460544
https://daneshyari.com

