
An embedded system for handwritten digit recognition

Luca B. Saldanha ⇑, Christophe Bobda
CSCE Department, University of Arkansas, Fayetteville, AR, United States

a r t i c l e i n f o

Article history:
Received 10 April 2015
Accepted 28 July 2015
Available online 18 August 2015

Keywords:
Neural network
Soft processor
Regularization
Image processing

a b s t r a c t

The goal of this work is the design and implementation of a low-cost system-on-FPGA for handwritten
digit recognition, based on a relatively deep and wide network of perceptrons. In order to increase
the performance of the application on embedded processors whose performances are way below
standard general purpose CPUs, a regularization method was used during the training phase of the neural
network that allows for the drastic reduction of floating point operations. Our implementation achieves a
3� speed-up toward a raw implementation without optimization, while keeping the accuracy in
acceptable ranges. Our efforts reinforce the fact that FPGAs are suited for deploying complex artificial
intelligence modules.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

Artificial intelligence is on the verge of becoming ubiquitous in
our society. A considerable amount of money made by Internet
companies comes from systems based on machine learning and
user data mining for recommending movies, personalized adver-
tisement and even match making. Soon autonomous intelligent
systems will share our world. Some already do, especially to sub-
stitute humans on high risk activities. But these are very sophisti-
cated and expensive systems. The barriers imposed by several
constraints are still to be broken: size, weight, power consumption
(SWAP) and cost, for example.

Embedded systems using reconfigurable devices appear as a
possible solution. Even though the most complex problems in the
artificial intelligence field still require supercomputer-like perfor-
mance, FPGAs are already an alternative for less complicated tasks.
This work demonstrates that by applying field specific knowledge
and by exploiting the full range of capabilities that an FPGA is able
to offer, it is possible to use them to implement practical systems
that rely on relatively deep and wide neural networks, such as
handwritten digit recognition.

In 2011, Gomperts and Ukil [1], already devised an implemen-
tation totally with VHDL of an artificial neural network. They
stressed that this unconventional computational model presents
complications such as a high hardware cost and a large number
of arithmetic operations (especially floating or fixed point). Dinu
et al. [2] presented an algorithm for hardware implementation of

neural networks, but with a simplified activation function that
allows for the simplification of the calculations due to its boolean
properties. Another successful and low cost implementation of a
learning structure (support vector machines) in FPGA is be found
at [3].

All these hardware models still require a great engineering
effort, in the sense that for every specific problem, the designer
must be aware of a great number of details that are not always
clear at a high level abstraction. This paper declaims a simple
approach. Since FPGA logic is inadequate for complex floating point
operations, embedded soft processors, such as the MicroBlaze [4],
are targeted or, more recently introduced hard coded processing
cores embedded in the FPGA fabric ([5] for example). Our work
proposes to circumvent the use of floating point operations
through a combination of code re-organization and dedicated
hardware accelerators. The hardware blocks are used to process
the input data, making useful transformations to conveniently feed
the neural network. Further explanation on the system architec-
ture is provided in Sections 2 and 5.

Crunching the input data has a clear positive effect when it
comes to improving the accuracy of the system, but it does not
directly augment its performance. The effect is rather incidental.
As it is demonstrated in subsequent sections, excluding
non-relevant sections of the image in the case of digit recognition
(e.g. the background), significantly reduces the number of arith-
metic operations in the neural network. This fact alone, however,
is not enough. Further improvements on the training phase of
the neural network shall be carried out.

An established concept in computational models claims that,
with very high probability, the best model is not more complex

http://dx.doi.org/10.1016/j.sysarc.2015.07.015
1383-7621/� 2015 Elsevier B.V. All rights reserved.

⇑ Corresponding author.
E-mail address: lbochisa@uark.edu (L.B. Saldanha).
URL: http://www.csce.uark.edu/~lbochisa/ (L.B. Saldanha).

Journal of Systems Architecture 61 (2015) 693–699

Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier .com/ locate /sysarc

http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysarc.2015.07.015&domain=pdf
http://dx.doi.org/10.1016/j.sysarc.2015.07.015
mailto:lbochisa@uark.edu
<xml_chg_old>http://www.csce.uark.edu/lbochisa</xml_chg_old><xml_chg_new>http://www.csce.uark.edu/<ce:sup>~</ce:sup>lbochisa/</xml_chg_new>
<xml_chg_old>http://www.csce.uark.edu/lbochisa</xml_chg_old><xml_chg_new>http://www.csce.uark.edu/<ce:sup>~</ce:sup>lbochisa/</xml_chg_new>
http://dx.doi.org/10.1016/j.sysarc.2015.07.015
http://www.sciencedirect.com/science/journal/13837621
http://www.elsevier.com/locate/sysarc


than the data suggests. This line of thought is referred to as the
Occam’s razor [6]. Several methods are applied to the training pro-
cess of neural networks to take advantage of this property [7]. L1
and L2 regularization are an example, as demonstrated in [8,9].
They exploit the hypothesis that some neural network connections
may be discarded and promote simplicity in the structure (the case
of L1 regularization) or the hypothesis that weaker connections
(small-scaled weights) have a similar simplifying effect (L2 regu-
larization). In the remaining of the paper it is demonstrated that
L1 regularization has an interesting side effect that may be applied
to our problem. By discarding the majority of the neuron’s connec-
tions, the neural network becomes feasible in very simple embed-
ded processors, with low clock frequency and extremely low cost.

By exploiting this side effect of L1 regularization, a handwritten
digit recognition system relying on a neural network predictor
trained using this method could be designed and implemented. It
achieves a 3� speed-up compared to the same system trained
without any optimization, making it possible to be executed in a
simple soft processor.

The rest of the paper is organized as follows. Section 2 gives the
reader an overview of the proposed architecture. Then, Section 3
lays the mathematical ground that is fundamental for the under-
standing of our approach. Next, the training process is explained
in Section 4 and every hardware block is briefly described (as well
as the software design approach) in Section 5. Finally Section 6
shows the results and Section 7 concludes the paper as well as
briefly discusses the future work.

2. System overview

The system is described overall as a hardware/software solution
for the specific application of handwritten digit recognition.
Hardware accelerators are used for the image processing pipeline,
liberating the software from the heavy burden of sequentially deal-
ing with image pixels. Another advantage is to significantly reduce
data exchange, a frequent bottleneck for System-on-Chips (SoCs)
performance, with external memories. Fig. 1 depicts a high level
schematic of the whole system. Every block was written in
VHDL, except for the MicroBlaze processor and DDR3 controller,
which were generated using tools from the FPGA manufacturer.

The input data must be processed properly in order to comply
with existing datasets used for off-line training (see Section 4).
There is nothing special in our implementation for the image fil-
ters, except, perhaps, for the proper choice of operations and their
order. The image is captured with a regular digital camera and the
blocks Camera Interface and Bayer to Grayscale treat the input pixels
to the desired grayscale format. Then, a thresholding operation
takes place to discard the irrelevant background and random noise
that might have occurred. Finally, a series of Gaussian filters is
applied, followed by subsampling, in order to reduce the size of

the image to the desired amount of pixels. All relevant details of
these hardware blocks are described in Section 5.1.

Hardware blocks for convolution and thresholding operations
usually exhibit real time behavior while keeping the resource
usage to a minimum. On the other hand, floating point operations
using dedicated DSP blocks (e.g. Xilinx’s DSP48A1) are commonly
not directly supported. Even custom made blocks tailored specifi-
cally for a given task require a significant portion of FPGA logic.
Therefore, implementations of neural network based predictors,
with a high number of neurons, are not suited for parallel process-
ing, making a sequential processor with floating point operations
capabilities fundamental. The MicroBlaze processor is used to
deploy the neural network based predictor, its output is used by
the Drawing Module to render the predicted digit onto the image
(for debugging purposes) and finally, after passing through a
DDR3 based frame buffer, the result is shown in a TFT display.

This is a typical example of the importance of hardware and
software mixed solutions. The central task for the application can
not be implemented in hardware blocks alone (since the device
does not have enough resources) and it is too slow to execute
purely as software in the low-performance embedded processors.
The former obstacle can not be overcome, at least without a great
engineering effort, but the second may be tackled using software
optimization methods and by understanding the elemental proper-
ties of the problem at hand. The next section goes deep into the
subject and a possible solution is demonstrated.

3. Neural networks

The implementation of a relatively complex neural network on
a cheap, small and low-power FPGA using a standard soft-
processor as the main processing unit is the fundamental contribu-
tion of this work. Thus, it is mandatory to deepen our knowledge in
this matter. This section briefly guides the reader through the
basics of neural networks based on standard, non-linear, continu-
ous activation functions. Then, the text goes over the training pro-
cess based on gradient descent and backpropagation. Finally, it is
shown that by using an L1 regularization method the number of
weights of the neural network may be drastically reduced, making
it possible to be implemented in a low-frequency embedded pro-
cessor in real time.

3.1. Basics

Neural networks have been studied for a long time. They date
back to at least 1943 [10] but the principles involved may be traced
to early works on linear regression methods in the 1800s as noted
by [11]. A great number of neural network models was developed
ever since, therefore it is important to emphasize that this work is
particularly interested in multi layer perceptrons (MLP) [12]. The
term neural network refers solely to multi layer perceptron through-
out the remainder of the text.

A perceptron is basically a biologically inspired model of a neu-
ron. It is excited by other neurons (or by external signals) and trig-
gers an output based on the sum of its inputs after being scaled by
weights that model how strong two perceptrons are connected.
This transformation is called the activation function. Fig. 2

Fig. 1. System overview. Fig. 2. The perceptron model.

694 L.B. Saldanha, C. Bobda / Journal of Systems Architecture 61 (2015) 693–699



Download English Version:

https://daneshyari.com/en/article/460548

Download Persian Version:

https://daneshyari.com/article/460548

Daneshyari.com

https://daneshyari.com/en/article/460548
https://daneshyari.com/article/460548
https://daneshyari.com

