Journal of Systems Architecture 61 (2015) 227-238

Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier.com/locate/sysarc

A predictable hardware to exploit temporal reuse in real-time
and embedded systems ™

@ CrossMark

R. Gran®"!, J. Segarra*"*! A. Pedro-Zapater®', L.C. Aparicio >, V. Vifials *>!, C. Rodriguez '

2 Dpt. Informdtica e Ingenieria de Sistemas, Universidad de Zaragoza, Spain
b Instituto de Investigacién en Ingenieria de Aragén (I3A), Universidad de Zaragoza, Spain
“Dpt. Arquitectura y Tecnologia de Computadores, Universidad del Pais Vasco, Spain

ARTICLE INFO ABSTRACT

Article history:

Received 10 November 2014

Received in revised form 13 March 2015
Accepted 7 May 2015

Available online 16 May 2015

In this paper we propose a new hardware data cache (FAFB, fully-associative FIFO tagged buffers) to
complement the data cache in processors. It provides predictability when exploiting temporal reuse in
array data structures, i.e. it allows an accurate WCET analysis, which is required in real-time systems.
With our hardware proposal, compiler transformations that exploit such reuse (essentially tiling) can
be safely applied. Moreover, our proposal has other features of particular interest to embedded systems,
where a set of well-tuned applications run in a hardware platform which may be constrained in size,

ccg\E/Tords: complexity and energy consumption. In order to test the most uncommon features of the FAFBs
Data cache (predictability and effectiveness with a small size), we perform a worst-case analysis on several kernel
Tiling algorithms for embedded and real-time computing, showing the interaction between tiling and our
Real-time hardware architecture. Our results show that the number of data cache misses is reduced between 1.3

and 19 times on such algorithms.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Real-time systems require that tasks complete their execution
before specific deadlines. Given hardware components with a fixed
latency, the worst case execution time (WCET) of a single task could
be calculated from the partial WCET of each basic block of the task.
However, in order to improve performance, current processors
perform many operations with a variable duration. In general, the
cache hierarchy is the component with the largest impact to the
WCET, both due to its continuous operation and its variable latency.

* This work was supported in part by grants TIN2013-46957-C2-1-P and

Consolider NoE TIN2014-52608-REDC (Spanish Gov.), and gaZ: T48 research group
(Aragén Gov. and European ESF).
** It is strictly prohibited to use, to investigate or to develop, in a direct or indirect
way, any of the scientific contributions of the authors contained in this work by any
army or armed group in the world, for military purposes and for any other use
which is against human rights or the environment, unless a written consent of all
the authors of this work is obtained, or unless a written consent of all the persons in
the world is obtained.

* Corresponding author at: Instituto de Investigacion en Ingenieria de Aragén
(I3A), Universidad de Zaragoza, Spain.

E-mail addresses: rgran@unizar.es (R. Gran), jsegarra@unizar.es (J. Segarra),
albapz@unizar.es (A. Pedro-Zapater), luisapa@unizar.es (L.C. Aparicio), victor@
unizar.es (V. Vifials), acprolac@ehu.es (C. Rodriguez).

! HiPEAC-3 NoE (European FP7/ICT 287759).

http://dx.doi.org/10.1016/j.sysarc.2015.05.001
1383-7621/© 2015 Elsevier B.V. All rights reserved.

Conventional caches offer a very good performance in average, but
real-time systems require predictability in the worst case, i.e. for a
given memory access, provide the number of processor cycles that
will take such access to be completed. Essentially, this means to be
able to know the cache hits and misses previously to the execution,
but such analysis has an exponential cost [1].

Data caching analysis in real-time systems is much more com-
plex than instruction caching, since it adds two important difficul-
ties. The first one is that a given memory instruction may access
different data addresses during execution. The second one is that
data addresses may be unknown at compile time, e.g. accessing
memory through unknown indexes, pointers, or hash functions.
Hence, although analyzing conventional data caches is theoreti-
cally possible [2,3], its practical use has limitations. Such difficul-
ties imply that WCET analysis of algorithms that work with large
data structures is hard, and the obtained WCET may have unac-
ceptable overestimations.

In order to facilitate the WCET analysis considering data cach-
ing, locked data caches and scratchpad memories may be used.
The content in such components is fixed and controlled by soft-
ware, so its behavior is easily predictable. However, the complexity
now deals with the discovery of a content-selection policy able to
obtain a low WCET [4,5]. Note that even the best selection of con-
tents may result in a WCET worse than that of a conventional

http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysarc.2015.05.001&domain=pdf
http://dx.doi.org/10.1016/j.sysarc.2015.05.001
mailto:rgran@unizar.es
mailto:jsegarra@unizar.es
mailto:albapz@unizar.es
mailto:luisapa@unizar.es
mailto:victor@unizar.es
mailto:victor@unizar.es
mailto:acprolac@ehu.es
http://dx.doi.org/10.1016/j.sysarc.2015.05.001
http://www.sciencedirect.com/science/journal/13837621
http://www.elsevier.com/locate/sysarc

228 R. Gran et al./Journal of Systems Architecture 61 (2015) 227-238

cache, since locked caches and scratchpads lack the dynamic reuse
exploitation of conventional caches. Trying to exploit such dyna-
mism, some authors just lock the data cache when the predictabil-
ity analysis is complex (e.g. on array walks in loops) or when they
want to preserve the cache contents from data references to
unknown addresses [6]. Another option is to manage the locked
cache as a software-controlled prefetch buffer, where specific con-
tents are loaded before being accessed [7]. However, proposals of
dynamically changing the loaded contents as the program executes
(dynamic locking methods) must add instructions for managing
such changes into the task. Thus, the potential WCET improvement
decreases with these added instructions.

Finally, it is worth mentioning two recent data cache designs
specifically targeted at real-time systems. The first one is a cache
with random mapping and replacement [8]. Such cache enables
probabilistic WCET computation, that is, compute a WCET value
with a probability of underestimation (i.e. unsafety) lower than,
for instance, the probability of hardware failure. Another novel
cache design is the ACDC [9]. It is composed of a very small
fully-associative data cache, whose contents can only be replaced
by a preselected set of instructions. Since each preselected memory
instruction replaces its own data cache line, ACDC provides a pre-
dictable behavior and it is easy to analyze and optimize for WCET
minimization. However, it does not allow to exploit temporal reuse
in array data structures. This drawback in the ACDC seems hard to
avoid, since adding the associativity required to exploit such
temporal reuse would make the ACDC behavior much harder to
predict.

In this paper we propose a small data cache specially targeted at
exploiting temporal reuse in array data structures. It is designed to
work coupled with any L1 data cache, so that our proposed
hardware catches temporal locality and at the same time prevents
possible conflicts in the coupled data cache. Our proposal consists
of a series of very small fully-associative FIFO tagged buffers
(FAFBs), each one associated to a specific load/store instruction.
In this way, each FAFB is able to cache a small subset (tile) of a
particular data structure without conflicts with other data
structures.

Our proposed hardware has the following features:

e Small size: 2 FAFBs with 4 cache lines per FAFB are proposed,
totaling 83 bytes. Using our hardware adequately, reuse
exploitation is independent of the size of the data structures.

No conflicts. Only selected instructions can replace lines in
FAFBs and no other instruction competes for storing data in
such lines. This translates into (i) no pollution (no other instruc-
tion can replace the contents cached in the FAFBs by the
selected instructions) and (ii) predictability (the number of hits
and misses in the worst case can be easily calculated by using
the well known data reuse theory [10]).

Easily exploitable through compiler transformations. Some code
transformations (essentially tiling) can easily exploit the tem-
poral locality usable by FAFBs.

Energetically efficient. Since the compiler knows when each FAFB
will be used, they could be enabled/disabled on request of the
running tasks.

Specially suitable for embedded devices, where size, production
cost, and energy consumption are key factors.
Specially suitable for hard/soft real-time systems,
worst-case predictability is the key factor.

where

All these features allow (i) an efficient execution of complex algo-
rithms (both in average and worst case) by exploiting temporal
reuse on array data structures, and (ii) an easy and accurate
WOCET analysis of such algorithms, which is hard with current exist-
ing hardware.

The rest of this paper is organized as follows. Section 2
describes the problem of temporal data reuse. In Section 3 we
describe our hardware proposal. Section 4 details the evaluation
environment and parameters. Section 5 shows the obtained results
focusing on real-time and embedded systems. Finally, Section 6
presents our conclusions.

2. Exploitation of temporal data reuse and tiling

Data reuse is a common property of computer programs, and
there are many studies on how to benefit from it. Essentially, such
benefit comes from caching the data to be reused, so that they
remain “local” when they are used again. Thus, exploiting data
reuse reduces execution time and energy consumption, since a
first-level cache hit is faster and consumes far less energy than a
next-level hit or main memory access.

Perhaps one of the most tricky access patterns to exploit is the
temporal reuse on large array data structures, because caches may
result ineffective at exploiting it [10]. For instance, assuming tem-
poral reuse by walking multiple times a data array larger than a
cache level, it results in no temporal locality hits for conventional
replacement policies (LRU, NRU, FIFO,...), since the data accesses
evict their own cached data before being reused. In order to over-
come this limitation, there are extensive studies on tiling/blocking
compiler transformations [10-12]. Instead of working with large
data structures, these transformations modify the algorithm to
work with small chunks (tiles) of those large data structures.
That is, they make tiles of the initial data structure and process
such tiles one after another. In this way each one of these small
tiles fits in cache, which effectively exploits the temporal locality.
Fig. 1 shows a representation of this transformation on the matrix
multiplication algorithm, as shown in [11]. It represents the three
loops required for a typical non-tiled matrix multiplication (a), and
its tiled version with five loops (b). The non-tiled version uses the
loop j to walk horizontally matrices Z and Y, and the tiled version
has divided this loop into two loops j and jj, where the j loop walks
horizontally inside small tiles in matrices Z and Y, and the jj loop
moves these tiles horizontally. Similarly, the k loop in the
non-tiled version walks horizontally the matrix X, whereas the
tiled version uses the k loop for walking horizontally inside small
tiles in the X matrix, and the kk loop moves these tiles horizontally.
Working with such tiles, data accesses present a closer temporal
reuse (i.e. the number of accesses between two accesses to the
same data address is smaller), which allows a better exploitation
of the temporal locality. Tiling of perfectly nested loops is imple-
mented by some compilers and tools like PLUTO [13]. Also, tiling
can be applied on imperfectly nested loops [14-16].

Many algorithms used in fields such as robotics, signal process-
ing, image processing, communications systems, cryptography,
computer vision, and adaptive control systems, can be exploited
by tiling transformations [17-21]. Obviously, the achieved locality
depends on cache parameters (size, line size, set-associativity, etc.),
cache policies (replacement policy, write policy, presence of cou-
pled victim cache, locked sets/ways/lines, etc.), hardware clients
of the cache (instruction/data/unified in single-processor, pri-
vate/shared in multi-processor, prefetching, etc.), and software cli-
ents of the cache (singletask/multitask/multithread/parallel
execution). Thus, applying a tiling transformation is not straight-
forward, since the tile size to use will depend on all these factors.
Moreover, even the most simple algorithms work with several data
structures, with their inherent cache conflicts. This means that
transforming an algorithm to optimize the accesses to a specific
data structure may have an adverse effect on the others, and even
on the optimized structure itself due to the cache conflicts, harm-
ing the global performance. Hence, the decision to apply tiling is

Download English Version:

https://daneshyari.com/en/article/460567

Download Persian Version:

https://daneshyari.com/article/460567

Daneshyari.com

https://daneshyari.com/en/article/460567
https://daneshyari.com/article/460567
https://daneshyari.com

