Journal of Systems Architecture 61 (2015) 256-266

Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier.com/locate/sysarc

Distributed storage protection in wireless sensor networks

@ CrossMark

Gianluca Dini, Lanfranco Lopriore *

Dipartimento di Ingegneria dell'Informazione, Universita di Pisa, via G. Caruso 16, 56126 Pisa, Italy

ARTICLE INFO ABSTRACT

Article history:

Received 10 June 2014

Received in revised form 2 February 2015
Accepted 24 March 2015

Available online 30 March 2015

With reference to a distributed architecture consisting of sensor nodes connected in a wireless network,
we present a model of a protection system based on segments and applications. An application is the
result of the joint activities of a set of cooperating nodes. A given node can access a segment stored in
the primary memory of a different node only by presenting a gate for that segment. A gate is a form of
pointer protected cryptographically, which references a segment and specifies a set of access rights for
this segment. Gates can be freely transmitted between nodes, thereby granting the corresponding access

Keywords: Lo . . i . N
Ac)c/ess right permissions. Two special node functionalities are considered, segment servers and application servers.
Protection Segment servers are used for inter-application communication and information gathering. An application

server is used in each application to support key management and rekeying. The rekey mechanism takes
advantage of key naming to cope with losses of rekey messages. The total memory requirements for key
and gate storage result to be a negligible fraction of the overall memory resources of the generic network

Sensor node
Symmetric-key cryptography

node.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

We shall refer to a distributed architecture consisting of sensor
nodes connected in a wireless network. In an architecture of this
type, stringent limitations exist in terms of the hardware resources
available in each node [15]. These limitations include the lack of
hardware support for the two usual processor modes, a kernel
(privileged) mode and a user (non-privileged) mode with restricted
memory access, a limited memory space, and the absence of a
memory management device for virtual to physical address trans-
lation [12,20,21]. It follows that, within the node boundaries, no
separation exists between the kernel space and the user space,
for instance.

In an environment of this type, we shall refer to a protection
system featuring applications and segments. A segment is a con-
tiguous memory area entirely contained within the boundaries of
the primary memory of a single node. Segments are the basic unit
of information gathering and transmission between the nodes. An
application is the result of the joint activities of a set of cooperating
nodes (the application members). We make no hypothesis on the
activity model of each member, which can be a scheduled com-
putation [3] or, in an event driven environment, a routine activated
by a hardware interrupt [10,24].

* Corresponding author.
E-mail addresses: g.dini@iet.unipi.it (G. Dini), l.lopriore@iet.unipi.it (L. Lopriore).

http://dx.doi.org/10.1016/j.sysarc.2015.03.002
1383-7621/© 2015 Elsevier B.V. All rights reserved.

A classical approach to access right representation in memory is
based on the concept of a password capability [1,5,16,27]. In a seg-
ment-oriented, password-capability architecture, the protection
system associates a set of passwords with each memory segment.
Each password corresponds to an access permission. A password
capability is a pair (S, w) where S is a segment identifier and w is
a password. If a match exists between w and one of the passwords
associated with segment S, then the password capability grants its
holder the corresponding access permission on S. If passwords are
large and sparse, password capabilities can be freely mixed in
memory with ordinary data items; an illegal attempt to modify
an existing password capability (e.g. in view of an undue ampli-
fication of access permissions), or even to forge a password
capability from scratch, is destined to fail, as the probability of
guessing a valid password is vanishingly low.

A salient feature of password capability protection is simplicity
in access right distribution. A process that holds a valid password
capability can grant the corresponding access rights to another
process by a simple action of password capability copy, from its
own address space to the address space of the recipient process.
In turn, the recipient process may well transmit the password
capability to a third process. In a situation of this type, it is hard,
if not impossible, to keep track of all copies of a given password
capability that exist in the system at the same given time. This
exacerbates the problem of access right revocation: the original
owner of a given password capability should be in a position to
retract the password capability from each subsequent recipient,


http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysarc.2015.03.002&domain=pdf
http://dx.doi.org/10.1016/j.sysarc.2015.03.002
mailto:g.dini@iet.unipi.it
mailto:l.lopriore@iet.unipi.it
http://dx.doi.org/10.1016/j.sysarc.2015.03.002
http://www.sciencedirect.com/science/journal/13837621
http://www.elsevier.com/locate/sysarc

G. Dini, L. Lopriore/Journal of Systems Architecture 61 (2015) 256-266 257

selectively. Of course, if we modify the passwords of a given seg-
ment, we revoke all the password capabilities referencing that seg-
ment. This revocation mechanism cannot be used for selective
revocation of a subset of all the password capabilities for the same
given segment.

In this paper, we shall refer to a variant of the password capabil-
ity model that has been designed to comply with the resource lim-
itations, outlined above, which characterize the sensor nodes in a
wireless sensor networks. In our approach, within a node, every
software routine has unlimited access to the whole primary mem-
ory of that node, irrespective of segment boundaries; whereas a
routine running in a given node can access a remote segment
stored in the primary memory of a different node only by present-
ing a gate for that segment. A gate is a form of password capability
protected cryptographically, which references a segment and
specifies a set of access rights for this segment. Possible access
rights are read, write, or both read and write. Gates are protected
from tampering by a form of symmetric-key cryptography
[13,33], superior to public key cryptography in both terms of low
computation requirements and low energy costs [4,17].

In a sensor node, the high memory cost of a set of passwords for
each memory segment is not acceptable. Our gate implementation
uses a single set of password for each node. We have obtained this
result by taking advantage of cryptography to incorporate the
name of the segment referenced by a given gate into the protection
field of this gate. A small set of system primitives, the protection
primitives, makes it possible to define segments, to generate gates
for existing segments, and to use gates in remote segment accesses.
A node that generates a gate is free to transmit this gate to another
node, thereby granting the corresponding access permissions to
the recipient node. Two or more segments can be defined for the
same memory area. By deleting one of these segments, we revoke
the gates referencing this segment; revocation does not affect
validity of the gates for the remaining segments.

The rest of this paper is organized as follows. Section 2 intro-
duces our protection environment with special reference to seg-
ments and gates. The protection primitives are presented, and
the actions involved in the execution of each primitive are illus-
trated with special reference to interactions between nodes.
Section 3 presents our application model. Two special node func-
tionalities are introduced, the application server, used within the
application boundaries to support information gathering, key
management and rekeying, and the segment server, used for
inter-application communication. Section 4 discusses the motiva-
tions for the proposed organization from a number of salient view-
points, including the hardware limitations existing in sensor nodes,
gate manipulation and revocation, security, and the memory
requirements for key and gate storage. We consider two different
network topologies in special depth, a configuration featuring a
form of full pairwise connectivity at the application level, and a
hierarchical topology featuring a general server that gathers data
from all the application servers. Relations of our work to previous
works are outlined. Section 5 gives concluding remarks.

2. The protection model
2.1. Segments

In the previous section, we have defined a segment as a contigu-
ous memory area that is entirely contained within the boundaries
of the primary memory a single node. A segment S is identified by
pair S = (M, C) where M is the node storing S, and C is the local iden-
tifier of S in M. In node M, a table, the segment table STy, contains
the associations of local segment identifiers with the correspond-
ing areas in the primary memory of that node. The table entry

S M

O

PAR

!
Ik

v Y

G M T

Fig. 1. Generation of gate G=(M, T) that specifies access right AR for segment
S=(M, C). par is the password that corresponds to AR in the password set Py
associated with node M.

for local segment C, i.e. segment S=(M, C), contains the starting
address B of this segment in the primary memory of M (the seg-
ment base) and the segment length L.

2.2. Gates

A set Py of three passwords, Py, = {pr, Pw, Drw}, is associated with
each given node M and is stored in the primary memory of this
node. Each password corresponds to an access right for the seg-
ments in M. Password pg corresponds to access right R, which
makes it possible to access the segments for read. This is similar
to password pw for access right W, which makes it possible to
access the segments for write, and to password pgw for access right
RW, which makes it possible to access the segments for both read
and write.

A gate G referencing segment S=(M, C) in node M is a pair
G=(M, T), where T is a protection field that includes the speci-
fication of the segment local identifier C and a password p. If a
match exists between p and one of the passwords in Py, then the
gate grants the corresponding access right for segment S.
Quantity M is in plaintext, whereas quantity T is encrypted by
using a symmetric-key cipher and a cryptographic key, called the
local key lky, which is associated with node M. lky, is stored in node
M; it is never transmitted or revealed by M to any other node, and
it is exclusively aimed at encrypting the gates for the segments in
M.

Fig. 1 shows the generation of gate G=(M, T) granting access
right AR for segment S = (M, C), AR being one of R, W or RW. Let
par denote the password in Py, that corresponds to this access right.
Quantity T is the result of encrypting pair (C, pag) by using a sym-
metric key cipher and local key lky,. Thus, a gate referencing a seg-
ment in node M can only be assembled in this node, as gate
generation requires knowledge of local key lky. Throughout this
paper, we assume that ciphers comply with an encryption mode
supporting both authentication and confidentiality, e.g. the
Counter with CBC-MAC (CCM) mode [11].!

Fig. 2 shows the reverse transformation of gate G into plaintext.
Local key lky is used to decrypt the protection field T and obtain
quantities C and p. Quantity p is compared with the passwords in
Py to validate the result of the transformation. If a match is found
and pag is the matching password, validation is successful, gate G
references segment S=(M, C) and specifies the access right

! Intuitively, a single encryption key can be used for both authentication and
confidentiality. The sender authenticates the header and the payload, it appends the
resulting Message Identification Code (MIC) to the payload and, finally, it encrypts
the bundle. The receiver decrypts the ciphertext into a payload and a MIC, and verifies
the MIC against the received header and payload.



Download English Version:

https://daneshyari.com/en/article/460569

Download Persian Version:

https://daneshyari.com/article/460569

Daneshyari.com


https://daneshyari.com/en/article/460569
https://daneshyari.com/article/460569
https://daneshyari.com

