
Supporting soft real-time parallel applications on multiprocessors q

Cong Liu a,⇑, James H. Anderson b

a Department of Computer Science, The University of Texas at Dallas, United States
b Department of Computer Science, The University of North Carolina at Chapel Hill, United States

a r t i c l e i n f o

Article history:
Available online 31 July 2013

Keywords:
Multiprocessor scheduling
Real-time systems
Parallel applications
Response time bounds

a b s t r a c t

The prevalence of multicore processors has resulted in the wider applicability of parallel programming
models such as OpenMP and MapReduce. A common goal of running parallel applications implemented
under such models is to guarantee bounded response times while maximizing system utilization. Unfor-
tunately, little previous work has been done that can provide such performance guarantees. In this paper,
this problem is addressed by applying soft real-time scheduling analysis techniques. Analysis and condi-
tions are presented for guaranteeing bounded response times for parallel applications under global EDF
multiprocessor scheduling.

Published by Elsevier B.V.

1. Introduction

The growing prevalence of multicore platforms has resulted in
the wider applicability of parallel programming models such as
OpenMP [3] and MapReduce [5]. Such models can be applied to
parallelize certain segments of programs, thus better utilizing
hardware resources and possibly shortening response times. Many
applications implemented under such parallel programming mod-
els have soft real-time (SRT) constraints. Examples include real-
time parallel video and image processing applications [1,7] and
computer vision applications such as colliding face detection and
feature tracking [11]. In these applications, providing fast and
bounded response times for individual video frames is important,
to ensure smooth video output. However, achieving this at the ex-
pense of using conservative hard real-time (HRT) analysis is not
warranted. In this paper, we consider how to schedule parallel task
systems that require such SRT performance guarantees on multi-
core processors.

Parallel task models pose new challenges to real-time schedul-
ing since intra-task parallelism has to be specifically considered.
Recent papers [12,29] on scheduling real-time periodic parallel
tasks have focused on providing HRT guarantees under global-
earliest-deadline-first (GEDF) or partitioned deadline-monotonic
(PDM) scheduling. However, as discussed above, viewing parallel
tasks as HRT may be overkill in many settings and furthermore
may result in significant schedulability-related utilization loss.
Thus, our focus is to instead ensure bounded response times in

supporting parallel task systems by applying SRT scheduling anal-
ysis techniques. Specifically, we assign deadlines to parallel tasks
and schedule them using GEDF, but in contrast to previous work
[12,29], we allow deadlines to be missed provided the extent of
such misses is bounded (hence response times are bounded as
well). Moreover, we consider a generalized parallel task model that
removes some of the restrictions seen in previous work (as dis-
cussed below).

Response time bounds have been studied extensively in the
context of global real-time scheduling algorithms such as GEDF
[6,13–25]. It has been shown that a variety of such algorithms
can ensure bounded response times in ordinary real-time sporadic
task systems (i.e., without intra-task parallelism) with no utiliza-
tion loss on multiprocessors [6,13].1 Motivated by these results,
we consider whether it is possible to specify reasonable constraints
under which bounded response times can be guaranteed using glo-
bal real-time scheduling techniques, for sporadic parallel task sys-
tems that are not HRT in nature.

Related work. Scheduling non-real-time parallel applications is a
deeply explored topic [4,5,8,9,26,31,32]. However, in most (if not
all) prior work on this topic, including all of the just-cited work,
scheduling decisions are made on a best-effort basis, so none of
these results can provide performance guarantees such as response
time bounds.

Regarding scheduling HRT parallel task systems, Lakshmanan
et al. proposed a scheduling technique for the fork-join model,
where a parallel task is a sequence of segments, alternating
between sequential and parallel phases [12]. A sequential phase

1383-7621/$ - see front matter Published by Elsevier B.V.
http://dx.doi.org/10.1016/j.sysarc.2013.07.001

q Work supported by AT&T, IBM, Intel, and Sun Corps.; NSF Grants CNS 0834270,
CNS 0834132, and CNS 0615197; and ARO Grant W911NF-06-1-0425.
⇑ Corresponding author. Tel.: +1 9193601521; fax: +1 9199621799.

E-mail address: cong.liu@utdallas.edu (C. Liu).

1 Technically, bounded response times can only be ensured for task systems that do
not over-utilize the underlying platform. In all claims in this paper concerning
bounded response times, a non-over-utilized system is assumed.

Journal of Systems Architecture 60 (2014) 152–164

Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier .com/locate /sysarc

http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysarc.2013.07.001&domain=pdf
http://dx.doi.org/10.1016/j.sysarc.2013.07.001
mailto:cong.liu@utdallas.edu
http://dx.doi.org/10.1016/j.sysarc.2013.07.001
http://www.sciencedirect.com/science/journal/13837621
http://www.elsevier.com/locate/sysarc


contains only one thread while a parallel phase contains multiple
threads that can be executed concurrently on different processors.
In their model, all parallel phases are assumed to have the same
number of parallel threads, which must be no greater than the
number of processors. Also, all threads in any parallel segment
must have the same execution cost. The authors derived a resource
augmentation bound of 3.42 under PDM scheduling.

In [29], Saifullah et al. extended the fork-join model so that each
parallel phase can have a different number of threads and threads
can have different execution costs. The authors proposed an ap-
proach that transforms each periodic parallel task into a number
of ordinary constrained-deadline periodic tasks by creating per seg-
ment intermediate deadlines. They also showed that resource aug-
mentation bounds of 2.62 and 3.42 can be achieved under GEDF and
PDM scheduling, respectively. In [27], Nelissen et al. proposed tech-
niques that optimize the number of processors needed to schedule
sporadic parallel tasks. The authors also proved that the proposed
techniques achieve a resource augmentation bound of 2.0 under
scheduling algorithms such as U-EDF [28] and PD2 [30].

In this paper, we seek to efficiently support parallel task sys-
tems on multiprocessors with bounded response times. We con-
sider the general parallel task model as presented in [27,29]. A
fundamental difference between this work and prior work is that
we propose a SRT schedulability analysis framework to derive con-
ditions for guaranteeing bounded response times.

Contributions. In this paper, we show that by assigning dead-
lines to parallel task systems and scheduling them under GEDF,
such systems can be supported on multiprocessors with bounded
response times. Our analysis shows that on a two-processor plat-
form, no utilization loss results for any parallel task system. De-
spite this special case, on a platform with more than two
processors, utilization constraints are needed. To discern how se-
vere such constraints must fundamentally be, we present a parallel
task set with minimum utilization that is unschedulable on any
number of processors. This task set violates our derived constraint
and has unbounded response times. The impact of utilization con-
straints can be lessened by restructuring tasks to reduce intra-task
parallelism. We propose optimization techniques that can be ap-
plied to determine such a restructuring. Finally, we present the re-
sults of experiments conducted to evaluate the applicability of the
derived schedulability condition.

Organization. The rest of this paper is organized as follows. Sec-
tion 2 describes our system model. In Section 3, we present our
analytical results. In Section 4, we discuss the above mentioned
optimization technique. In Section 5, we experimentally evaluate
the proposed analysis. Section 6 concludes.

2. System model

We consider the problem of scheduling a set s ¼ fs1; . . . ; sng of
n independent sporadic parallel tasks on m processors. Each paral-
lel task si is a sequence of si segments, where the jth segment sj

i

contains a set of v j
i threads (v j

i > m is allowed). The kth
(1 6 k 6 v j

i) thread sj;k
i in segment sj

i has a worst-case execution
time of ej;k

i . We assume that each thread sj;k
i executes for exactly

ej;k
i time units. This assumption can be eased to treat ej;k

i as an upper
bound, at the expense of more cumbersome notation. For nota-
tional convenience, we order the threads of each segment sj

i of
each parallel task si in largest-worst-case-execution-time-first or-
der. Thus, thread sj;1

i has the largest worst-case execution time
among all threads in any segment sj

i. For any segment sj
i, if

v j
i > 1, then the threads in this segment can be executed in parallel

on different processors. The threads in the jth segment can execute
only after all threads of ðj� 1Þth segment (if any) have completed.
We let vmax

i denote the maximum number of threads in any seg-
ment of task si. We assume vmax

i P 2 holds for at least one task

si; otherwise, the considered task system is simply an ordinary
sporadic task system (without intra-task parallelism).

The worst-case execution time of any segment sj
i is defined as

ej
i ¼

Pv j
i

k¼1ej;k
i (when all threads execute sequentially). The worst-

case execution time of any parallel task si is defined as ei ¼
Psi

j¼1ej
i

(when all threads in each segment of the task execute sequentially).
In our analysis, we also make use of the best-case execution time of
si on m processors (when si is the only task executing on m proces-
sors), denoted emin

i . In general, for any parallel task si, if we allow
vmax

i P m and threads in each segment have different execution
costs, then the problem of calculating emin

i is equivalent to the prob-
lem of minimum makespan scheduling [10], where we treat each
thread in a segment as an independent job and seek to obtain the
minimum completion time for executing all such jobs on m proces-
sors. This gives us per segment best-case execution times, which
can be summed to yield emin

i . Unfortunately, this problem has been
proven to be NP-hard [10]. This problem can be solved using a clas-
sical dynamic programming-based algorithm [10], which has expo-
nential time complexity with respect to the per segment thread
count. However, for some special cases where certain restrictions
on the task model apply, we can easily calculate emin

i in linear time.

For example, when vmax
i 6 m holds, emin

i ¼
Psi

j¼1ej;1
i since in this case

all threads of each segment of si can be executed in parallel on m

processors and thread sj;1
i has the largest execution cost in each seg-

ment sj
i. Moreover, when all threads in each segment have equal

execution costs, emin
i ¼

Psi
j¼1

Pdv j
i
=me

k¼1 ej;1
i , because the execution of

each segment sj
i can be viewed as the executions of dv j

i=me sequen-

tial sub-segments, each with an equal execution cost of ej;1
i .

Each parallel task is released repeatedly, with each such invoca-
tion called a job. The kth job of si, denoted si;k, is released at time
ri;k. Associated with each task si is a period pi, which specifies the
minimum time between two consecutive job releases of si. We re-
quire emin

i 6 pi for any task si; otherwise, response times (defined
next) can grow unboundedly. The utilization of a task si is defined
as ui ¼ ei=pi, and the utilization of the task system s as
Usum ¼

P
si2sui. We require Usum 6 m; otherwise, response times

can grow unboundedly. For any job si;k of task si, its uth segment
is denoted su

i;k, and the vth thread of this segment is denoted su;v
i;k .

An example parallel task is shown in Fig. 1. For clarity, a summary
of important terms defined so far, as well as some additional terms
defined later, is presented in Table 1.

Successive jobs of the same task are required to execute in se-
quence. If a job si;k completes at time t, then its response time is
t � ri;k. A task’s response time is the maximum response time of
any of its jobs. Note that, when a job of a task completes after the re-
lease time of the next job of that task, this release time is not altered.

Assigning deadlines and priority points. Each parallel task si has a
specified relative deadline of di, which may differ from pi (thus, our
analysis is applicable to soft real-time arbitrary-deadline sporadic
parallel tasks). We do not use such deadlines in prioritizing jobs,
but rather assign each job si;k a priority point at di;k ¼ ri;k þ pi and
schedule jobs on a global earliest-priority-point-first (GEPPF) basis.
That is, earlier priority points are prioritized over later ones.2 We
assume that ties are broken by task ID (lower IDs are favored).

3. Response time bound

We derive a response time bound for GEPPF by comparing the
allocations to a task system s in a processor sharing (PS) schedule
and an actual GEPPF schedule of interest for s, both on m

2 GEDF becomes a special case of GEPPF when di ¼ pi holds for each si .

C. Liu, J.H. Anderson / Journal of Systems Architecture 60 (2014) 152–164 153



Download English Version:

https://daneshyari.com/en/article/460573

Download Persian Version:

https://daneshyari.com/article/460573

Daneshyari.com

https://daneshyari.com/en/article/460573
https://daneshyari.com/article/460573
https://daneshyari.com

