
Studying the code compression design space – A synthesis approach

Sreejith K. Menon ⇑,1

Mathworks, 3 Apple Hill Drive, Natick, MA 01760, United States

a r t i c l e i n f o

Article history:
Available online 14 November 2013

Keywords:
Code compression
High level synthesis
Logic synthesis
Power estimation
Embedded systems

a b s t r a c t

Embedded domain has witnessed the application of different code compression methodologies on differ-
ent architectures to bridge the gap between ever-increasing application size and scarce memory
resources. Selection of a code compression technique for a target architecture requires a detailed study
and analysis of the code compression design space. There are multiple design parameters affecting the
space, time, cost and power dimensions. Standard approaches of exploring the code compression design
space are tedious, time consuming, and almost impractical with the increasing number of proposed com-
pression algorithms. This is one of the biggest challenges faced by an architect trying to adopt a code
compression methodology for a target architecture. We propose a novel synthesis based tool-chain for
fast and effective exploration of the code compression design space and for evaluation of the tradeoffs.
The tool-chain consists of a frontend framework that works with different compression/decompression
schemes and a backend with high-level-synthesis, logic-synthesis, and power estimation tools to output
the critical design parameters. We use the tool-chain to effectively analyze different code compression/
decompression schemes of varying complexities.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

The size and complexity of embedded applications have been
increasing consistently over the past few decades to meet the
manifold demands of end users. With the availability of new
tools and frameworks assisting the users to design, develop
and verify complex applications, code volume has dramatically
increased from a few thousands of lines of code to tens of
millions of lines of code. This trend is believed to continue in
the future with the use of embedded processors in more ad-
vanced and emerging fields and domains [27]. But this persistent
growth in embedded software is constrained by the requirement
for smaller memory size which helps in reducing the die-size,
power consumption, and the overall cost. Code compression
has been suggested as a solution to reconcile these contradictory
requirements [2]. A general-purpose code compression scheme
tries to improve the code density by replacing an instruction
stream with a more compact compressed stream of instructions,
with decompression being performed dynamically during pro-
gram execution. Object code compression schemes can be
broadly classified into (i) statistical and (ii) dictionary schemes.
Statistical compression schemes, which include Huffman and

arithmetic coding schemes, offer better compression results at
the cost of increased decompression overhead. On the other
hand, dictionary based schemes employ comparatively simple
decompression steps, which make them suitable candidates for
applications where program execution time is paramount. A gen-
eral purpose code compression algorithm should have the ability
to achieve fast address resolution at decompression time. Jump,
branch, and call statements that alter the flow of control should
be directed to the new address location in the compressed
instruction stream. One way to achieve this is by compressing
small blocks of instructions and by using a map table, generally
called the Line Address Table (LAT), to hold the address mapping
between the compressed block of instructions and the corre-
sponding uncompressed block [2].

In the past few decades, a large number of compression algo-
rithms have been proposed and studied on a wide variety of archi-
tectures resulting in a considerable reduction in the embedded
application size. But our recent studies [23,26] have concluded that
the efficacy of different algorithms varies with the type of architec-
ture. i.e. a compression algorithm that gives impressive results on a
particular architecture may not perform as well on a totally differ-
ent architecture. Therefore an architect needs to experiment with
different sets of compression/decompression algorithms for a tar-
get architecture. There are several dimensions to be considered
while evaluating the code compression design space, the code size
reduction being the most important one. Number of cycles con-
sumed for decompressing a compressed block of instructions is

1383-7621/$ - see front matter � 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.sysarc.2013.11.001

⇑ Tel.:+1 508 647 8514.
E-mail address: sreejith.menon@mathworks.com

1 This research was done when the author was working in the Implementation
Group of Synopsys India Pvt Ltd.

Journal of Systems Architecture 60 (2014) 179–193

Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier .com/ locate /sysarc

http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysarc.2013.11.001&domain=pdf
http://dx.doi.org/10.1016/j.sysarc.2013.11.001
mailto:sreejith.menon@mathworks.com
http://dx.doi.org/10.1016/j.sysarc.2013.11.001
http://www.sciencedirect.com/science/journal/13837621
http://www.elsevier.com/locate/sysarc


also as critical because of its direct effect on the program execution
time. Decompression hardware used for fast decoding of
compressed block of instructions adds additional dimensions of
cost and power. Hardware cost and power expended by the addi-
tional hardware should be evaluated to estimate the overall impact
of a code compression scheme. Power consumption is considered
to be an important constraint in the present day embedded de-
vices. With the increased significance of power reduction in
embedded systems, early evaluation of power consumption is crit-
ical to bound the overall power budget.

Exploring the code compression design space becomes diffi-
cult due to the unavailability of flexible tools or frameworks in
the field of code compression that assist the architect to make
informed decisions based on the tradeoffs between different
dimensions. In our previous work [26], we had developed an
advisory tool capable of computing compression ratios and
power reduction parameters using execution traces. The advisory
tool worked with cycle accurate simulators to determine the
performance degradation due to on-the-fly decompression. But
the tool was not capable of evaluating the number of cycles
needed for decompression operation and it had to be provided
as input. We take a totally different synthesis based approach
in this paper to study the code compression design space with
the design of an efficient tool-chain capable of analyzing differ-
ent code compression schemes and evaluating the tradeoffs.
The tool-chain is divided into two parts – a frontend framework
that accepts different compression/decompression algorithms,
and a backend with high-level synthesis, logic synthesis, and
power estimation tools. Along with the automated synthesis of
decompression hardware, the tool-chain outputs relevant design
parameters at different stages. We have implemented the front-
end framework and integrated different compression/decompres-
sion schemes of varying complexities and coupled the
framework with the synthesis tools in the backend for effective
synthesis of the decompression hardware. The commercially
available Synopsys’ Synphony C Compiler [38], Design Compiler
[37], and Power Compiler [39] have been used in our experi-
ments for high level synthesis, logic synthesis, and power esti-
mation of ASIC designs. The different code compression
schemes used in the tool-chain resulted in compression ratios
in the range of 67–95% in VLIW and RISC architectures using a
set of Mediabench [32] programs. The decompression overheads
varied between 8 and 119 cycles for a compressed block of eight
32 bit instructions and the synthesized hardware ranged from
2849 lm2 to 33775 lm2 cell area using TSMC 65 nm standard
cell library and 250 MHz clock frequency. The power estimation
results of the decompression hardware extended from 0.71 mW
to 4.09 mW.

The rest of the paper is organized as follows. Section 2 describes
the high level approach of the tool-chain; Specific details of the
frontend and backend of the tool-chain are discussed in Sections
3 and 4, respectively. Experiments and results are outlined in Sec-
tion 5. Section 6 presents related work and comparison with exist-
ing work in the field. Section 7 contains the conclusion and
possibilities for future work.

2. The tool chain

2.1. The problem

In industry and academia, there are different instances where a
detailed and fast evaluation of tradeoffs of different design param-
eters of code compression is inevitable. Let us consider two differ-
ent scenarios selected from the industry and academic
perspectives.

� Scenario 1: Suppose a code compression scheme has to be
selected for a specific architecture to improve the overall code
density. The target architecture, set of applications, and desired
range of design parameters are provided with a final goal of
selecting one or more code compression schemes and their vari-
ants satisfying the given constraints.
� Scenario 2: Suppose a new code compression algorithm is pro-

posed after a detailed research in the field. There is a require-
ment to compare the new algorithm with existing
compression schemes and to report all the design parameters
of the new scheme to evaluate its benefits.

In both scenarios, one or more compression schemes have to be
developed, corresponding decompression hardware have to be de-
signed and implemented, all design parameters of interest have to
be analyzed, targeted optimizations have to be performed, and
tradeoffs have to be studied. In the first scenario, a team of hard-
ware and software experts along with analysts of design parameters
will be formed to solve these complex issues. In the second sce-
nario, a small research team may have to accomplish the same com-
plex task. Space, time, cost, and power dimensions of the code
compression design space need to be explored thoroughly in both
the cases to meet the final goals. Some of the code compression
schemes [20,22] are based on the Instruction Set Architecture
(ISA) whereas others work independent of the ISA. In some other
cases, based on the cost and complexity of the decompression hard-
ware, parameters of the compression algorithm need to be varied.
There have been prior works [4,6] evaluating the effects of achiev-
ing the decompression in software, but the need for fast decompres-
sion operation favors the hardware approach. The critical design
parameters of code compression influencing the space–time-cost-
power tradeoffs are

� Compression ratio – compressed code size/original code size.
� Decompression overhead per compressed block – number of

cycles consumed for decompressing a block of instructions.
� Hardware cost – total cell area of the decompression hardware.
� Power usage – power expended by the decompression

hardware.

The conventional way of estimating the above mentioned
parameters requires extensive software implementation for evalu-
ating the compression scheme along with the design and imple-
mentation of the decompression hardware using some Hardware
Description Language (HDL). Analyzing the code size reduction of
different schemes involves implementation and comparison of
multiple code compression schemes and their variants. Decom-
pression hardware also offers multiple options for memory ports,
decompression engine types (serial vs. parallel, speculative vs.
non-speculative), frequencies etc. Above all, an optimization tar-
geted for a dimension of the design space may have catastrophic
effects over other dimensions of the same space. All these factors
and their interactions contribute to the complexity of the problem.

2.2. Our approach

Our current studies reveal that the complexity can be reduced
to a great extent by abstracting out and reusing the different mod-
ules of code compression schemes and by using high-level synthe-
sis, logic synthesis, and power estimation tools for automated
synthesis of hardware from a higher level of abstraction and for
gate level power estimation. The tool-chain shown in Fig. 1, an
extension of our earlier work [31], tries to achieve this and outputs
all the critical design parameters of code compression. By adding
power evaluation to the work in [31], we ensure that the tool-chain
covers all the design parameters of code compression. The frame-

180 S.K. Menon / Journal of Systems Architecture 60 (2014) 179–193



Download English Version:

https://daneshyari.com/en/article/460575

Download Persian Version:

https://daneshyari.com/article/460575

Daneshyari.com

https://daneshyari.com/en/article/460575
https://daneshyari.com/article/460575
https://daneshyari.com

