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We analyze the dynamical properties of a tetrahedron transformation on the space of 
non-degenerate tetrahedra which can be identified with the non-compact globally 
symmetric 8-dimensional space SL(3, R)/ SO(3, R). We establish the existence of 
a local attractor which coincides with the set of regular tetrahedra and identify 
conditions which imply that the basin of attraction is the entire space. In numerical 
tests, these conditions are fulfilled for a large set of random tetrahedra.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The research on geometric transformations for tetrahedra has its offspring in the importance of tetrahedral 
meshes in the computational engineering: physical properties of objects are virtually tested by simulations 
which discretize the object at the beginning, using mostly a tetrahedral or hexahedral mesh – depending on 
the purpose. The convergence rate and error estimates of the numerical solution schemes depend severely 
on the mesh quality (see [1,2]): distorted mesh elements can decelerate or even impede the convergence of 
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the numerical method and negatively affect the solution accuracy (see numerical examples in [3]). These 
are the main reasons why at the beginning of every simulation, a lot of effort is put into the preprocessing 
in order to guarantee a high quality mesh. It should be remarked that tools for mesh smoothing exist in 
abundance using a wide range of mathematical methods (see overview in [4]), but at the moment, they do 
not usually replace in totality the expensive correction of single elements by hand.

Looking for a simple, but effective smoothing method, [5] introduced the geometric element mesh smooth-
ing based on a generic geometric element transformation which relocates the vertices of every mesh element 
such that it becomes the most regular possible. Its good convergence properties and applicability were proven 
in a serial of articles (see [6] and references within), also analytically for a single element in [7]. A very com-
prehensive presentation of this method is given in [8, Section 6.3] comparing its runtime, convergence and 
smoothing results to the dominating techniques in mesh smoothing.

In this article, we study a different geometric transformation for tetrahedra which is derived from the 
rotational symmetry group of a regular tetrahedron. It can be the base of a geometric mesh smoothing 
algorithm analogous to the one mentioned above. In its motivational background, it is strongly related to 
the geometric triangle transformation introduced in [9]. We call a transformation geometric if it commutes 
with the similarity transformations of the euclidean space, these are translations, homotheties and rotations. 
Intuitively, the geometric transformations map similar tetrahedra to similar tetrahedra.

Our approach is a dynamical analysis of the tetrahedron transformation Θ: where does a discrete orbit {
Θn(x)

∣∣ n ≥ 0
}

for an arbitrary tetrahedron x converge to? The analysis is based on two facts: firstly, we 
define the set of tetrahedra as the special linear group SL(3, R) which is a non-compact Lie group; secondly, 
the transformation – being geometric – commutes with the rotational group SO(3, R). Consequently, we can 
employ techniques from the theory of compact group actions and the geometric structure of Lie groups and 
their Lie algebras together with results of the theory of dynamical systems for the analysis of the dynamical 
behavior of the transformation.

For the understanding of dynamics, attractors play a central role: let T be a continuous map on a 
topological space X, we then call a compact set A ⊂ X which is T -invariant, T (A) ⊂ A, an attractor for 
T if there exists an open T -invariant neighborhood U ⊃ A such that 

⋂
n≥0 T

n(U) = A. The maximal set 
U with the property above is called basin of attraction because every x ∈ U eventually converges under 
positive iterates of T to A. If U = X, the attractor is called a global attractor. An attractor can have a 
complicated topological structure, e.g. being a fractal set, and carry a non-trivial dynamics T |A.

The article is organized as following: we define the space of tetrahedra and discuss briefly its properties. 
In the subsequent section we motivate and introduce the tetrahedron transformation, the main subject of 
this article, and prove its basic properties. We are then prepared to show the existence of a local attractor 
and the conditions under which its basin of attraction is the whole space of tetrahedra.

While we focus in this article on a specific transformation, our methods are equally well applicable to 
study the dynamics of any SO(3, R)-equivariant transformation on SL(3, R).

2. Space of tetrahedra

Every non-degenerate tetrahedron x with vertices x0, x1, x2, x3 ∈ R
3 can be written up to translation as 

a (3, 3)-matrix x = (x1 − x0, x2 − x0, x3 − x0) with det(x) �= 0. Therefore, we consider the set GL(3, R) of 
invertible real matrices which is a 9-dimensional open affine subvariety in R9 with two connected components 
corresponding to matrices with negative and positive determinant, respectively. Tetrahedra which have the 
same shape, but different volumes, should not be distinguished. Consequently, as the volume of a tetrahedron 
x can be computed by 1

6 det(x) it suffices to define the set of tetrahedra X by

X :=
{
x ∈ GL(3,R)

∣∣ det(x) = 1
}

= SL(3,R)

which is the special linear group and a 8-dimensional submanifold in R9.
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