
Comparative analysis of two different middleware approaches
for reconfiguration of distributed real-time systems

Marisol García Valls ⇑, Pablo Basanta Val
Departamento de Ingeniería Telemática, Universidad Carlos III de Madrid, Leganés, Madrid, Spain

a r t i c l e i n f o

Article history:
Available online 24 August 2013

Keywords:
Reconfiguration
Distributed systems
Middleware
Real-time

a b s t r a c t

Software-based reconfiguration of distributed real-time systems is a complex problem with many sides
to it ranging from system-wide concerns down to the intrinsic non-robust nature of the specific middle-
ware layer and the used programming techniques. In a completely open distributed system, mixing
reconfiguration and real-time is not possible; the set of possible target states can be very large threaten-
ing the temporal predictability of the reconfiguration process. Over the last years, middle ware solutions
have appeared mainly for general purpose systems where efficient state transitions are sought for, but
real-time properties are not considered. One of the few contributions to run-time software reconfigura-
tion in distributed real-time environments has been the iLAND middleware, where the germ of a solution
with high potential has been conceived and delivered in practice.1 The key idea has been the fact that a set
of bounds and limitations to the structure of systems and to their open nature needs to be imposed in order
to come up with practical solutions. In this paper, the authors present the different sides of the problem of
software reconfiguration from two complementary middleware perspectives comparing two strategies built
inside distribution middleware. We highlight the lessons learned in the iLAND project aimed at service-
based reconfiguration and compare it to our experience in the development of distributed real-time Java
reconfiguration based on distributed tasks rescheduling. Authors also provide a language view of both solu-
tions. Lastly, empirical results are shown that validate these solutions and compare them on the basis of
different programming language realizations.

Crown Copyright � 2013 Published by Elsevier B.V. All rights reserved.

1. Introduction

Information and communication technologies are rapidly driv-
ing the road to an enhanced distributed computing paradigm
where public, private, individual, and group’s resources can all be
put in common to provide enhanced processing power in a highly
connected environment. In this way, the resources needed and uti-
lized by application users are, in part, hosted remotely and pro-
vided from the outside. This is one of the principles of cloud
computing that allows to make use of huge amounts of computa-
tional and storage resources [1] by means of reduced computing
power devices as personal smart phones [2], tablets, etc. Applica-
tions and data are run and stored on virtualized resources that
are potentially shared with large numbers of other users. At the
same time, this brings in interesting properties for companies
and society in general, such as energy efficiency and environ-
ment-friendly.

The appearance of efficient communications middleware tech-
nologies and flexible software paradigms as service oriented archi-
tectures (SOA) has been of paramount importance for enabling
open and versatile environments. It provides a fertile soil for devel-
oping new applications with a decoupled and flexible structure.
Still, support for real-time in such domains has not progressed so
fast. There are a number of reasons for this. Although real-time re-
search has provided numerous results in scheduling theory, the
practical implementation of real-time software systems is still
the bottleneck to timing predictability. Specially, the communica-
tions middleware level presents numerous challenges that are con-
ceptually simplified in the theory. Middleware is often taken as a
black box with a number of needed properties and assumptions
that fit well with the real-time abstractions and models. However,
in practice, middleware technologies have not completely elimi-
nated the uncertainty brought in by the underlying techniques
such as serialization, address resolution, transport and Internet le-
vel details, among others. In fact, as they introduce extra logic, they
also increase the number of sources of unpredictability.

Providing real-time guarantees in distributed computing envi-
ronments is a hard problem, and it becomes non tractable if these
are considered to be open systems with dynamic behavior. The

1383-7621/$ - see front matter Crown Copyright � 2013 Published by Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.sysarc.2013.08.010

⇑ Corresponding author. Tel.: +34 916248783.
E-mail addresses: mvalls@it.uc3m.es (M. García Valls), pbasanta@it.uc3m.es (P.

Basanta Val).
1 http://sourceforge.net/projects/iland-project/

Journal of Systems Architecture 60 (2014) 221–233

Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier .com/ locate /sysarc

http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysarc.2013.08.010&domain=pdf
http://dx.doi.org/10.1016/j.sysarc.2013.08.010
mailto:mvalls@it.uc3m.es
mailto:pbasanta@it.uc3m.es
http://sourceforge.net/projects/iland-project/
http://dx.doi.org/10.1016/j.sysarc.2013.08.010
http://www.sciencedirect.com/science/journal/13837621
http://www.elsevier.com/locate/sysarc


question is that openness and dynamicity are characteristics of the
emerging applications; systems undergo changes that may require
a modification of their structure to adequately process and react to
events from the environment. In this work, we refer to such
changes as reconfigurations, i.e., the process of transitioning from
the current system structure (or configuration) to the target one.

For open distributed systems, merging reconfiguration with
real-time is not solvable with the available techniques. A set of
bounds and limitations to the structure of systems needs to be im-
posed in order to reduce complexity by means of limiting the size
of the space of solutions, i.e., the number of possible target config-
urations. This is one of the first lessons learned in our previous
work in the iLAND project [3,4] that resulted in the identification
of a set of phases for the complete time-bounded reconfiguration
process. We further elaborated on some of the reconfiguration
problems in [5] providing a high-level view of these, and showing
how to reduce the space of solutions by embedding extra logic in
the reference implementation of iLAND [3,6].

1.1. The contribution

Different languages such as Ada [27], Java (Real-Time Specifica-
tion for Java or RTSJ) [28], or C/C++ have been instrumental for
implementing distributed real-time systems. The actual distribu-
tion middleware for real-time systems such as RT-CORBA [29], Dis-
tributed RTSJ [22], DSA [30], or DDS [31] are actually silent about
run-time reconfiguration aspects. Even the modeling languages
such as MARTE UML [32,53,54] do not integrate run-time real-time
reconfiguration capacities. They rather support the specification
and usage of the basic building blocks that may be reused in other
high-level abstractions for specific applications. As a result, these
specifications do not provide templates or entities that enable
control on dynamic functionality replacement during system oper-
ation. Providing practical approaches to real-time reconfiguration
is one of the next challenges in real-time systems; in fact, this is
a fundamental property of CPS (Cyber Physical Systems).

Only some initial steps have been taken to achieve real-time
reconfiguration guided by specific research projects in different
domains such as [25] for real-time systems and [34] for main-
stream service provisioning. Their efforts in defining simple and
reusable patterns and techniques for either real-time reconfigura-
tion or considering a restricted view of timing parameters contrib-
ute to a general corpus of techniques that may be used to provide
real-time system practitioners with a valuable glossary.

Our contribution subsumes results from two different ap-
proaches (initially presented in [5,33]) that provide practical
real-time reconfiguration solutions embedded in the core of distri-
bution middleware. These are: (1) iLAND, that is an DDS (Data
Distribution Service for real-time systems) based middleware
enhanced with reconfiguration logic and real-time resource man-
agement; and (2) DREQUIEMI, that is a middleware based on DRTSJ
– Distributed Real-Time Java). The first presented reconfiguration
approach is based on the empirical experience gained in the iLAND
project [5] that focused on providing real-time reconfiguration
capabilities for service-based real-time applications. The DRTSJ
reconfiguration approach presents a Java-based middleware [33]
to reschedule distributed task sets by means of Java language
templates.

In our previous work ([5,33]), we discussed separately the
individual problems and solutions to software reconfiguration on
each of the two above-mentioned middleware. In this paper, we
present an integrated view of them that provides a common corpus
of reusable techniques that may be employed in different distrib-
uted real-time applications. We present a new comparative
view, elaborating a common benchmark that draws interesting
conclusions on both reconfiguration approaches and provides

useful hints on their behavior and suitability under different
conditions.

The rest of the paper describes the two previously introduced
strategies under a unified and revised perspective. Section 2 intro-
duces the problems of software reconfiguration. Section 3 presents
the different approaches to software reconfiguration from the
point of view of the distribution middleware. Section 4 describes
system and application models for each of the middleware
approaches: based on services or tasks. Also, it presents an over-
view of the API that shows the middleware realization of the
reconfiguration approaches. Section 5 presents empirical results
about the reconfiguration models of both middleware approaches
and contributes a common benchmark for reconfiguration.
Section 6 describes the related work, and section 7 draws some
conclusions about the work.

2. Exposing the problems of software reconfiguration

Run-time reconfiguration challenges temporal predictability at
the different architectural layers. We have investigated different
sides of software reconfiguration in distributed systems that have
real-time requirements. A general description of the challenges
and approaches to reconfiguration is provided in this section.

2.1. Some reconfiguration challenges

Real-time applications may have different degrees of toler-
ance to deadline misses. In soft real-time applications, deadline
misses result only in a degraded but acceptable operation, e.g.,
real-time video processing in intelligent co-operative nodes. We
target at emerging distributed applications such as CPS where
some parts have soft real-time requirements; they must be de-
signed in order to react to the occurrence of events that may
require some adaptation (or reconfiguration) of the system in
terms of: (i) functional structure where some software parts
need to be removed, replaced, or newly added, or (ii) internal
processing configuration where the same functionality may con-
tinue to be provided but adaptation of the processing parame-
ters is performed. An example of a reconfiguration event is one
generated by an unexpected movement in some high-security
perimeter as a sign of a possible intrusion detected by a sensor;
it may require that a different camera set be activated instan-
taneously and higher resolution images are captured and sent
at the same time.

Reconfiguration events can be triggered either internally, i.e.,
due to the self monitoring process, or externally, i.e., requested by
an external entity such as a user. Moreover, reconfiguration trig-
gers may arrive:

� Synchronously; at a specified time when the system is able
to process them.

� Asynchronously; with an unknown arrival pattern. They can
be modeled as a periodic task as well.

To adequately process reconfiguration events, real-time sys-
tems require that the transition, either to a new functional struc-
ture or a new internal processing configuration, is time bounded.
However, there are different important threats to preserving tem-
poral predictability in the presence of dynamic behavior. A number
of considerations to be made are:

� Dynamic versus static entity membership. Systems can
have a fixed size or dynamic size. The former does not allow
any modification of the software execution units at run-
time, whereas the latter does allow the spontaneous dis/
appearance of active software units at any time.

222 M. García Valls, P. Basanta Val / Journal of Systems Architecture 60 (2014) 221–233



Download English Version:

https://daneshyari.com/en/article/460578

Download Persian Version:

https://daneshyari.com/article/460578

Daneshyari.com

https://daneshyari.com/en/article/460578
https://daneshyari.com/article/460578
https://daneshyari.com

