Contents lists available at [ScienceDirect](http://www.ScienceDirect.com/)

Differential Geometry and its Applications

www.elsevier.com/locate/difgeo

Pure spinors, intrinsic torsion and curvature in even dimensions

DIFFERENTIAL
GEOMETRY AND ITS
ARRUCATIONS

Arman Taghavi-Chabert

Masaryk University, Faculty of Science, Department of Mathematics and Statistics, Kotlářská 2, 611 37 Brno, Czech Republic

A R T I C L E I N F O A B S T R A C T

Article history: Received 3 February 2014 Received in revised form 23 November 2015 Available online 15 March 2016 Communicated by M.G. Eastwood

Keywords: Complex Riemannian geometry Pure spinors Distributions Intrinsic torsion Curvature prescription Spinorial equations

We study the geometric properties of a 2m-dimensional complex manifold $\mathcal M$ admitting a holomorphic reduction of the frame bundle to the structure group $P \subset \text{Spin}(2m, \mathbb{C})$, the stabiliser of the line spanned by a pure spinor at a point. Geometrically, M is endowed with a holomorphic metric q , a holomorphic volume form, a spin structure compatible with *g*, and a holomorphic pure spinor field *ξ* up to scale. The defining property of *ξ* is that it determines an almost null structure, i.e. an *m*-plane distribution \mathcal{N}_{ξ} along which *g* is totally degenerate.

We develop a spinor calculus, by means of which we encode the geometric properties of \mathcal{N}_{ξ} corresponding to the algebraic properties of the intrinsic torsion of the *P*-structure. This is the failure of the Levi-Civita connection ∇ of *q* to be compatible with the *P*-structure. In a similar way, we examine the algebraic properties of the curvature of ∇ .

Applications to spinorial differential equations are given. In particular, we give necessary and sufficient conditions for the almost null structure associated to a pure conformal Killing spinor to be integrable. We also conjecture a Goldberg–Sachs-type theorem on the existence of a certain class of almost null structures when (\mathcal{M}, g) has prescribed curvature.

We discuss applications of this work to the study of real pseudo-Riemannian manifolds.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Let M be a complex manifold of dimension *n*, and denote by TM and T^{*}M its holomorphic tangent and cotangent bundles respectively, and by $F\mathcal{M}$ its holomorphic frame bundle. Following [\[28\],](#page--1-0) we define a *holomorphic metric* on M to be a non-degenerate holomorphic section *g* of the bundle $\odot^2 T^*M$ — here \odot denotes the symmetric tensor product. We identify TM and T^{*}M by means of *g*. The pair (M, g) will be referred to as a *complex Riemannian manifold*, and is characterised equivalently by a holomorphic reduction of the structure group of FM to the complex orthogonal group $O(n,\mathbb{C})$. Analogously to real pseudo-Riemannian geometry, there is a unique torsion-free holomorphic affine connection ∇ preserving *g*,

E-mail address: taghavia@math.muni.cz.

also referred to as the *Levi-Civita connection* of *g*, with associated curvature tensors, which depend holomorphically on M. We shall also assume the existence of a global *holomorphic volume* $\text{form } \varepsilon \in \Gamma(\wedge^n T^*\mathcal{M})$ normalised to $q(\varepsilon, \varepsilon) = n!$ — here, we have extended q to a non-degenerate bilinear form on the bundle ∧•TM of holomorphic differential forms, and its dual. This induces a further holomorphic reduction of the structure group of FM to the complex special orthogonal group $SO(n, \mathbb{C})$. The pair (q, ε) can be used to define a holomorphic Hodge duality operator \star on $\wedge^{\bullet} T^{\ast}M$. We shall henceforth assume $n = 2m$. Then \star squares to plus or minus the identity on $\wedge^m T^*\mathcal{M}$, and thus splits $\wedge^m T^*\mathcal{M}$ as a direct sum of the two eigensubbundles $\wedge^m_+ T^*M$ of \star . Elements of $\wedge^m_+ T^*M$ are referred to as holomorphic *self-dual* and *anti-self-dual m*-forms.

This article is concerned with the local geometric properties of an *almost null structure* on (M, q) , i.e. a holomorphic rank-*m* distribution $\mathcal{N} \subset \mathcal{T} \mathcal{M}$ totally null with respect to *g*, i.e. $g(v, w) = 0$ for all *v* and *w* in \mathcal{N}_p , and dim $\mathcal{N}_p = m$ at any point p of M. Being determined (i.e. annihilated) by a holomorphic m-form, an almost null structure may be either self-dual or anti-self-dual, and is also referred to as an *α-plane* or *β-plane distribution* accordingly.

There is a slick way to describe an almost null structure if we assume in addition (M, g) to be *spin*, i.e. it admits a holomorphic reduction to $\text{Spin}(2m,\mathbb{C})$, the two-fold covering of $\text{SO}(2m,\mathbb{C})$. In this case, (\mathcal{M}, g) is endowed with two irreducible spinor bundles S^+ and S^- . Sections of TM acts on sections of S^{\pm} via Clifford multiplication $\cdot : T\mathcal{M} \times \mathcal{S}^{\pm} \to \mathcal{S}^{\mp}$. In particular, a holomorphic section ξ of \mathcal{S}^+ or \mathcal{S}^- determines a distribution \mathcal{N}_{ξ} on $\mathcal M$ in the sense that

$$
(\mathcal{N}_{\xi})_p := \{ v \in T_p \mathcal{M} : v \cdot \xi_p \}, \quad \text{at any point } p \text{ in } \mathcal{M}.
$$

The defining property of the Clifford multiplication tells us that \mathcal{N}_{ξ} is totally null. When \mathcal{N}_{ξ} has dimension *m* at every point, *ξ* is said to be *pure*. If we refer to a pure spinor *ξ* defined *up to scale* as a *projective pure spinor* [ξ], it is clear that a projective pure spinor field $[\xi]$ determines a unique almost null structure \mathcal{N}_{ξ} . Conversely, any almost null structure arises in this way. Whether ξ lies in S^+ or S^- corresponds to whether \mathcal{N}_{ξ} is self-dual or anti-self-dual. All spinors in \mathcal{S}^{\pm} are pure in dimensions two, four and six, but when $m > 3$, the property of being pure imposes non-trivial algebraic conditions on the components of a spinor.

The geometric properties of an almost null structure \mathcal{N}_{ξ} associated to a projective pure spinor $[\xi]$ can be expressed in terms of the covariant derivative of $[\xi]$. For instance, if \mathcal{N}_{ξ} is integrable, i.e. $[\Gamma(\mathcal{N}_{\xi}), \Gamma(\mathcal{N}_{\xi})] \subset$ Γ(N*ξ*), then one can show that the leaves of its foliation are totally geodetic, i.e. ∇*XY* ∈ Γ(N*ξ*) for any holomorphic sections *X*, *Y* of \mathcal{N}_{ξ} . This condition can also be expressed as [\[20\]](#page--1-0)

 $\nabla_X \xi = \lambda_X \xi$, for any $X \in \Gamma(\mathcal{N}_{\xi})$, and some holomorphic function λ_X dependent on *X*, (1.1)

where, with a slight abuse of notation, ∇ denotes the spin connection induced from the Levi-Civita connection. Note that (1.1) is independent of the scale of ξ . Further, if ξ satisfies (1.1) , then

$$
C(X, Y, Z, W) = 0, \qquad \text{for all } X, Y, Z, W \in \Gamma(\mathcal{N}_{\xi}).
$$
 (1.2)

where C denotes the Weyl tensor of ∇ , i.e. the conformally invariant part of the Riemann tensor of ∇ .

The investigation of conditions such as (1.1) and (1.2) will be the subject of this article. For this purpose, we note that an almost null structure \mathcal{N}_{ξ} on (\mathcal{M}, g) associated to a projective pure spinor field $[\xi]$ is equivalent to a holomorphic reduction of the structure group of FM to the stabiliser $P \subset G := \text{Spin}(2m, \mathbb{C})$ of [*ξ*] at a point. This *P* is an instance of a *parabolic* subgroup, and is isomorphic to the semi-direct product $G_0 \ltimes P_+$ where part G_0 is reductive, and P_+ is nilpotent. The Lie algebras $\mathfrak{p} \subset \mathfrak{g} \cong \mathfrak{so}(2m, \mathbb{C})$ of *P* is isomorphic to $\mathfrak{g}_0 \oplus \mathfrak{p}_+$, where $\mathfrak{g}_0 \cong \mathfrak{gl}(m, \mathbb{C})$ and $\mathfrak{p}_+ \cong \wedge^2 \mathbb{C}^m$ are the Lie algebras of G_0 and P_+ respectively. Here, we have identified $(\mathcal{N}_{\xi})_p \cong \mathbb{C}^m$ at any point *p*.

Download English Version:

<https://daneshyari.com/en/article/4605783>

Download Persian Version:

<https://daneshyari.com/article/4605783>

[Daneshyari.com](https://daneshyari.com)