Contents lists available at ScienceDirect

Differential Geometry and its Applications

www.elsevier.com/locate/difgeo

Pure spinors, intrinsic torsion and curvature in even dimensions

Arman Taghavi-Chabert

Masaryk University, Faculty of Science, Department of Mathematics and Statistics, Kotlářská 2, 611 37 Brno, Czech Republic

ARTICLE INFO

Article history: Received 3 February 2014 Received in revised form 23 November 2015 Available online 15 March 2016 Communicated by M.G. Eastwood

Keywords: Complex Riemannian geometry Pure spinors Distributions Intrinsic torsion Curvature prescription Spinorial equations

ABSTRACT

We study the geometric properties of a 2m-dimensional complex manifold \mathcal{M} admitting a holomorphic reduction of the frame bundle to the structure group $P \subset \text{Spin}(2m, \mathbb{C})$, the stabiliser of the line spanned by a pure spinor at a point. Geometrically, \mathcal{M} is endowed with a holomorphic metric g, a holomorphic volume form, a spin structure compatible with g, and a holomorphic pure spinor field ξ up to scale. The defining property of ξ is that it determines an almost null structure, i.e. an m-plane distribution \mathcal{N}_{ξ} along which g is totally degenerate.

We develop a spinor calculus, by means of which we encode the geometric properties of \mathcal{N}_{ξ} corresponding to the algebraic properties of the intrinsic torsion of the *P*-structure. This is the failure of the Levi-Civita connection ∇ of *g* to be compatible with the *P*-structure. In a similar way, we examine the algebraic properties of the curvature of ∇ .

Applications to spinorial differential equations are given. In particular, we give necessary and sufficient conditions for the almost null structure associated to a pure conformal Killing spinor to be integrable. We also conjecture a Goldberg–Sachs-type theorem on the existence of a certain class of almost null structures when (\mathcal{M}, g) has prescribed curvature.

We discuss applications of this work to the study of real pseudo-Riemannian manifolds.

@ 2016 Elsevier B.V. All rights reserved.

1. Introduction

Let \mathcal{M} be a complex manifold of dimension n, and denote by $T\mathcal{M}$ and $T^*\mathcal{M}$ its holomorphic tangent and cotangent bundles respectively, and by $F\mathcal{M}$ its holomorphic frame bundle. Following [28], we define a *holomorphic metric* on \mathcal{M} to be a non-degenerate holomorphic section g of the bundle $\odot^2 T^*\mathcal{M}$ — here \odot denotes the symmetric tensor product. We identify $T\mathcal{M}$ and $T^*\mathcal{M}$ by means of g. The pair (\mathcal{M}, g) will be referred to as a *complex Riemannian manifold*, and is characterised equivalently by a holomorphic reduction of the structure group of $F\mathcal{M}$ to the complex orthogonal group $O(n, \mathbb{C})$. Analogously to real pseudo-Riemannian geometry, there is a unique torsion-free holomorphic affine connection ∇ preserving g,

E-mail address: taghavia@math.muni.cz.

also referred to as the Levi-Civita connection of g, with associated curvature tensors, which depend holomorphically on \mathcal{M} . We shall also assume the existence of a global holomorphic volume form $\varepsilon \in \Gamma(\wedge^n T^*\mathcal{M})$ normalised to $g(\varepsilon, \varepsilon) = n!$ — here, we have extended g to a non-degenerate bilinear form on the bundle $\wedge^{\bullet}T\mathcal{M}$ of holomorphic differential forms, and its dual. This induces a further holomorphic reduction of the structure group of F \mathcal{M} to the complex special orthogonal group SO (n, \mathbb{C}) . The pair (g, ε) can be used to define a holomorphic Hodge duality operator \star on $\wedge^{\bullet}T^*\mathcal{M}$. We shall henceforth assume n = 2m. Then \star squares to plus or minus the identity on $\wedge^m T^*\mathcal{M}$, and thus splits $\wedge^m T^*\mathcal{M}$ as a direct sum of the two eigensubbundles $\wedge^m_{\pm}T^*\mathcal{M}$ of \star . Elements of $\wedge^m_{\pm}T^*\mathcal{M}$ are referred to as holomorphic self-dual and anti-self-dual m-forms.

This article is concerned with the local geometric properties of an *almost null structure* on (\mathcal{M}, g) , i.e. a holomorphic rank-*m* distribution $\mathcal{N} \subset T\mathcal{M}$ totally null with respect to g, i.e. g(v, w) = 0 for all v and w in \mathcal{N}_p , and dim $\mathcal{N}_p = m$ at any point p of \mathcal{M} . Being determined (i.e. annihilated) by a holomorphic *m*-form, an almost null structure may be either self-dual or anti-self-dual, and is also referred to as an α -plane or β -plane distribution accordingly.

There is a slick way to describe an almost null structure if we assume in addition (\mathcal{M}, g) to be *spin*, i.e. it admits a holomorphic reduction to $\text{Spin}(2m, \mathbb{C})$, the two-fold covering of $\text{SO}(2m, \mathbb{C})$. In this case, (\mathcal{M}, g) is endowed with two irreducible spinor bundles \mathcal{S}^+ and \mathcal{S}^- . Sections of $T\mathcal{M}$ acts on sections of \mathcal{S}^{\pm} via Clifford multiplication $\cdot : T\mathcal{M} \times \mathcal{S}^{\pm} \to \mathcal{S}^{\mp}$. In particular, a holomorphic section ξ of \mathcal{S}^+ or \mathcal{S}^- determines a distribution \mathcal{N}_{ξ} on \mathcal{M} in the sense that

$$(\mathcal{N}_{\xi})_p := \{ v \in \mathcal{T}_p \mathcal{M} : v \cdot \xi_p \}, \quad \text{at any point } p \text{ in } \mathcal{M}.$$

The defining property of the Clifford multiplication tells us that \mathcal{N}_{ξ} is totally null. When \mathcal{N}_{ξ} has dimension m at every point, ξ is said to be *pure*. If we refer to a pure spinor ξ defined *up to scale* as a *projective pure* spinor $[\xi]$, it is clear that a projective pure spinor field $[\xi]$ determines a unique almost null structure \mathcal{N}_{ξ} . Conversely, any almost null structure arises in this way. Whether ξ lies in \mathcal{S}^+ or \mathcal{S}^- corresponds to whether \mathcal{N}_{ξ} is self-dual or anti-self-dual. All spinors in \mathcal{S}^{\pm} are pure in dimensions two, four and six, but when m > 3, the property of being pure imposes non-trivial algebraic conditions on the components of a spinor.

The geometric properties of an almost null structure \mathcal{N}_{ξ} associated to a projective pure spinor $[\xi]$ can be expressed in terms of the covariant derivative of $[\xi]$. For instance, if \mathcal{N}_{ξ} is integrable, i.e. $[\Gamma(\mathcal{N}_{\xi}), \Gamma(\mathcal{N}_{\xi})] \subset$ $\Gamma(\mathcal{N}_{\xi})$, then one can show that the leaves of its foliation are totally geodetic, i.e. $\nabla_X Y \in \Gamma(\mathcal{N}_{\xi})$ for any holomorphic sections X, Y of \mathcal{N}_{ξ} . This condition can also be expressed as [20]

 $\nabla_X \xi = \lambda_X \xi$, for any $X \in \Gamma(\mathcal{N}_{\xi})$, and some holomorphic function λ_X dependent on X, (1.1)

where, with a slight abuse of notation, ∇ denotes the spin connection induced from the Levi-Civita connection. Note that (1.1) is independent of the scale of ξ . Further, if ξ satisfies (1.1), then

$$C(X, Y, Z, W) = 0, \qquad \text{for all } X, Y, Z, W \in \Gamma(\mathcal{N}_{\xi}).$$
(1.2)

where C denotes the Weyl tensor of ∇ , i.e. the conformally invariant part of the Riemann tensor of ∇ .

The investigation of conditions such as (1.1) and (1.2) will be the subject of this article. For this purpose, we note that an almost null structure \mathcal{N}_{ξ} on (\mathcal{M}, g) associated to a projective pure spinor field [ξ] is equivalent to a holomorphic reduction of the structure group of F \mathcal{M} to the stabiliser $P \subset G := \text{Spin}(2m, \mathbb{C})$ of [ξ] at a point. This P is an instance of a *parabolic* subgroup, and is isomorphic to the semi-direct product $G_0 \ltimes P_+$ where part G_0 is reductive, and P_+ is nilpotent. The Lie algebras $\mathfrak{p} \subset \mathfrak{g} \cong \mathfrak{so}(2m, \mathbb{C})$ of P is isomorphic to $\mathfrak{g}_0 \oplus \mathfrak{p}_+$, where $\mathfrak{g}_0 \cong \mathfrak{gl}(m, \mathbb{C})$ and $\mathfrak{p}_+ \cong \wedge^2 \mathbb{C}^m$ are the Lie algebras of G_0 and P_+ respectively. Here, we have identified $(\mathcal{N}_{\xi})_p \cong \mathbb{C}^m$ at any point p. Download English Version:

https://daneshyari.com/en/article/4605783

Download Persian Version:

https://daneshyari.com/article/4605783

Daneshyari.com