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We study the geometric properties of a 2m-dimensional complex manifold M
admitting a holomorphic reduction of the frame bundle to the structure group 
P ⊂ Spin(2m, C), the stabiliser of the line spanned by a pure spinor at a point. 
Geometrically, M is endowed with a holomorphic metric g, a holomorphic volume 
form, a spin structure compatible with g, and a holomorphic pure spinor field ξ up 
to scale. The defining property of ξ is that it determines an almost null structure, 
i.e. an m-plane distribution Nξ along which g is totally degenerate.
We develop a spinor calculus, by means of which we encode the geometric properties 
of Nξ corresponding to the algebraic properties of the intrinsic torsion of the 
P -structure. This is the failure of the Levi-Civita connection ∇ of g to be compatible 
with the P -structure. In a similar way, we examine the algebraic properties of the 
curvature of ∇.
Applications to spinorial differential equations are given. In particular, we give 
necessary and sufficient conditions for the almost null structure associated to a pure 
conformal Killing spinor to be integrable. We also conjecture a Goldberg–Sachs-type 
theorem on the existence of a certain class of almost null structures when (M, g)
has prescribed curvature.
We discuss applications of this work to the study of real pseudo-Riemannian 
manifolds.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Let M be a complex manifold of dimension n, and denote by TM and T∗M its holomorphic tangent 
and cotangent bundles respectively, and by FM its holomorphic frame bundle. Following [28], we define 
a holomorphic metric on M to be a non-degenerate holomorphic section g of the bundle �2T∗M — here 
� denotes the symmetric tensor product. We identify TM and T∗M by means of g. The pair (M, g)
will be referred to as a complex Riemannian manifold, and is characterised equivalently by a holomorphic 
reduction of the structure group of FM to the complex orthogonal group O(n, C). Analogously to real 
pseudo-Riemannian geometry, there is a unique torsion-free holomorphic affine connection ∇ preserving g, 
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also referred to as the Levi-Civita connection of g, with associated curvature tensors, which depend holo-
morphically on M. We shall also assume the existence of a global holomorphic volume form ε ∈ Γ(∧nT∗M)
normalised to g(ε, ε) = n! — here, we have extended g to a non-degenerate bilinear form on the bundle 
∧•TM of holomorphic differential forms, and its dual. This induces a further holomorphic reduction of the 
structure group of FM to the complex special orthogonal group SO(n, C). The pair (g, ε) can be used to 
define a holomorphic Hodge duality operator � on ∧•T∗M. We shall henceforth assume n = 2m. Then �
squares to plus or minus the identity on ∧mT∗M, and thus splits ∧mT∗M as a direct sum of the two eigen-
subbundles ∧m

±T∗M of �. Elements of ∧m
±T∗M are referred to as holomorphic self-dual and anti-self-dual

m-forms.
This article is concerned with the local geometric properties of an almost null structure on (M, g), i.e. a 

holomorphic rank-m distribution N ⊂ TM totally null with respect to g, i.e. g(v, w) = 0 for all v and w in 
Np, and dimNp = m at any point p of M. Being determined (i.e. annihilated) by a holomorphic m-form, 
an almost null structure may be either self-dual or anti-self-dual, and is also referred to as an α-plane or 
β-plane distribution accordingly.

There is a slick way to describe an almost null structure if we assume in addition (M, g) to be spin, i.e.
it admits a holomorphic reduction to Spin(2m, C), the two-fold covering of SO(2m, C). In this case, (M, g)
is endowed with two irreducible spinor bundles S+ and S−. Sections of TM acts on sections of S± via 
Clifford multiplication · : TM × S± → S∓. In particular, a holomorphic section ξ of S+ or S− determines 
a distribution Nξ on M in the sense that

(Nξ)p := {v ∈ TpM : v · ξp} , at any point p in M.

The defining property of the Clifford multiplication tells us that Nξ is totally null. When Nξ has dimension 
m at every point, ξ is said to be pure. If we refer to a pure spinor ξ defined up to scale as a projective pure 
spinor [ξ], it is clear that a projective pure spinor field [ξ] determines a unique almost null structure Nξ. 
Conversely, any almost null structure arises in this way. Whether ξ lies in S+ or S− corresponds to whether 
Nξ is self-dual or anti-self-dual. All spinors in S± are pure in dimensions two, four and six, but when m > 3, 
the property of being pure imposes non-trivial algebraic conditions on the components of a spinor.

The geometric properties of an almost null structure Nξ associated to a projective pure spinor [ξ] can be 
expressed in terms of the covariant derivative of [ξ]. For instance, if Nξ is integrable, i.e. [Γ(Nξ), Γ(Nξ)] ⊂
Γ(Nξ), then one can show that the leaves of its foliation are totally geodetic, i.e. ∇XY ∈ Γ(Nξ) for any 
holomorphic sections X, Y of Nξ. This condition can also be expressed as [20]

∇Xξ = λXξ , for any X ∈ Γ(Nξ), and some holomorphic function λX dependent on X, (1.1)

where, with a slight abuse of notation, ∇ denotes the spin connection induced from the Levi-Civita connec-
tion. Note that (1.1) is independent of the scale of ξ. Further, if ξ satisfies (1.1), then

C(X,Y, Z,W ) = 0 , for all X,Y, Z,W ∈ Γ(Nξ). (1.2)

where C denotes the Weyl tensor of ∇, i.e. the conformally invariant part of the Riemann tensor of ∇.
The investigation of conditions such as (1.1) and (1.2) will be the subject of this article. For this purpose, 

we note that an almost null structure Nξ on (M, g) associated to a projective pure spinor field [ξ] is 
equivalent to a holomorphic reduction of the structure group of FM to the stabiliser P ⊂ G := Spin(2m, C)
of [ξ] at a point. This P is an instance of a parabolic subgroup, and is isomorphic to the semi-direct product 
G0 � P+ where part G0 is reductive, and P+ is nilpotent. The Lie algebras p ⊂ g ∼= so(2m, C) of P is 
isomorphic to g0 ⊕ p+, where g0 ∼= gl(m, C) and p+ ∼= ∧2

C
m are the Lie algebras of G0 and P+ respectively. 

Here, we have identified (Nξ)p ∼= C
m at any point p.
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