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We present a new class of solutions for the inverse problem in the calculus of 
variations in arbitrary dimension n. This is the problem of determining the existence 
and uniqueness of Lagrangians for systems of n second order ordinary differential 
equations. We also provide a number of new theorems concerning the inverse 
problem using exterior differential systems theory (EDS). Concentrating on the 
differential step of the EDS process, our new results provide a significant advance in 
the understanding of the inverse problem in arbitrary dimension. In particular, we 
indicate how to generalise Jesse Douglas’s famous solution for n = 2. We give some 
non-trivial examples in dimensions 2, 3 and 4. We finish with a new classification 
scheme for the inverse problem in arbitrary dimension.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction: the inverse problem

The inverse problem in the calculus of variations can be expressed as follows. Given a system of second-
order ordinary differential equations

ẍa = F a(t, xb, ẋb), a, b = 1, . . . , n,

the question is whether the solutions of this system are also the solutions of the Euler Lagrange equations,

d

dt

( ∂L

∂ẋa

)
− ∂L

∂xa
= 0,
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for some regular Lagrangian L(t, xb, ẋb). This problem was first proposed by Helmholtz [11] in 1887. He 
considered whether the equations in the form presented were Euler–Lagrange. In the case of single equations 
Helmholtz found necessary conditions for this to be true. It is not well-known that Sonin [23] solved this 
one-dimensional problem the previous year in a more general form, although Hirsch [12] is credited with 
the so-called multiplier version of the inverse problem, which is the focus of this paper. He addressed the 
uniqueness and existence of a non-degenerate multiplier matrix, gab(t, xc, ẋc), satisfying

gab(ẍb − F b) ≡ d

dt

(
∂L

∂ẋa

)
− ∂L

∂xa
.

Necessary and sufficient conditions for the existence of a regular Lagrangian, according to Douglas [9] and 
to Sarlet [19], are that this multiplier satisfies

gab = gba, Γ(gab) = gacΓc
b + gbcΓc

a, gacΦc
b = gbcΦc

a,
∂gab
∂ẋc

= ∂gac
∂ẋb

, (1)

where

Γa
b := −1

2
∂F a

∂ẋb
, Φa

b := −∂F a

∂xb
− Γc

bΓa
c − Γ(Γa

b ),

and where

Γ := ∂

∂t
+ ẋa ∂

∂xa
+ F a ∂

∂ẋa
.

These conditions, along with non-degeneracy, are commonly referred to as the Helmholtz conditions. If one 
or more matrices gab are found that satisfy these four Helmholtz conditions, then there exists one (or more) 
Lagrangians related to these matrices by the expression,

∂2L

∂ẋa∂ẋb
= gab.

Integrating this for a given gab we see that the related Lagrangian L is only defined up to the addition of a 
total time derivative of an arbitrary function of t, xa.

The multiplier problem was completely solved by Douglas in 1941 for the two dimensional case (see [9]), 
that is, a pair of second order equations on the plane. He divided the problem into four primary cases (I to 
IV) according to the properties of the matrix Φa

b . The corresponding solution for higher dimensions, even 
for dimension 3, remained unsolved until the late nineteen nineties when some arbitrary n subcases were 
elaborated [5,20,3].

The current attacks on this problem, dating back to the 1980s, involve the creation and use of various 
differential geometric tools. We offer the reader the following references which give some perspective on 
these developments [3,6,7,10,14,16,17,21].

The current situation, in the framework of [7], is that the following dimension n situations are solved in 
the sense of Douglas.

1. Φ is a multiple of the identity. The multiplier is determined by n arbitrary functions each of n + 1
variables. This is the extension of Douglas’s case I. See [2,3,20].

2. Φ is diagonalisable with distinct eigenvalues and “integrable eigenspaces”. The multiplier is determined 
by n arbitrary functions each of 2 variables. This is the extension of Douglas’s case IIa1. See [5,1].

3. There are many non-existence results depending on technical conditions on Φ. See [18].
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