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In this paper, we give a Gauss–Bonnet–Chern formula for real Finsler vector bundles 
with respect to any metric-compatible connection. The key idea is to modify any 
given metric-compatible connection to be a new metric-compatible connection with 
some special properties. As a corollary, a Gauss–Bonnet–Chern formula for Finsler 
manifolds with respect to any metric-compatible connection is established.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

A real Finsler vector bundle (E , F, M) is a real vector bundle E of rank n over an m-dimensional differ-
entiable manifold M , equipped with a Finsler metric F , which is a nonnegative function on E satisfying the 
following conditions:

(i) F is smooth on the slit bundle E \0;

(ii) F is positively homogeneous, i.e., F (λy) = λF (y), for all λ > 0, y ∈ E ;

(iii) The Hessian [F 2]yiyj (x, y) is positive definite, where F (x, y) := F (yisi|x)

and {si} is a local frame field of E .
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Clearly, real Finsler vector bundles are more general than Riemannian vector bundles. Furthermore, the 
tangent bundle of a Finsler manifold is a real Finsler vector bundle, whose horizontal bundle and vertical 
bundle are isomorphic to each other (cf. [3]).

The main purpose of this paper is to establish a Gauss–Bonnet–Chern (GBC) formula for real Finsler 
vector bundles with respect to any metric-compatible connection. More precisely, given an oriented real 
Finsler vector bundle (E , F ) of rank n over an n-dimensional compact oriented closed manifold M , let 
π : SE → M be the projective sphere bundle and let π∗E be the pull-back bundle. The Finsler metric F
then induces a Riemannian metric g on π∗E . An operator D is called a metric-compatible connection of 
(E , F ), if it is a linear connection on π∗E metric-compatible with g. Given a metric-compatible connection 
D of (E , F ), define the n-form ΩD as follows:

ΩD =
{

(−1)p
22pπpp!εi1...i2pΩ

i2
i1
∧ · · · ∧ Ωi2p

i2p−1
, n = 2p,

0, n = 2p + 1,
(1.1)

where (Ωi
j) is the local curvature 2-form of D, εi1...i2p is the multiple Kronecker Delta. Then, by using a 

new approach, we shall prove the following

Theorem 1.1. Let E be an oriented real Finsler vector bundle of rank n over an n-dimensional closed oriented 
manifold M . Given any metric-compatible connection D, for any smooth section X with isolated zeros on E , 
we have ∫

M

[X]∗
(

ΩD + E

V(x)

)
= χ(E )

vol(Sn−1) , (1.2)

where [X] is the section of SE induced by X, V(x) is the Riemannian volume of π−1(x), E is an n-form 
on SE and χ(E ) is the Euler characteristic of E .

In order to describe Theorem 1.1 in more detail, we recall some background material. It is well known 
that seventy years ago, S.S. Chern [9,10] gave an intrinsic proof of the GBC theorem for all oriented compact 
closed n-dimensional Riemannian manifolds (M, g), that is,

∫
M

Ω = χ(M), (1.3)

where Ω is defined as in (1.1) with respect to the Levi-Civita connection, χ(M) is the Euler characteristic 
of M . And the Chern–Weil theory then yields (1.3) exactly holds for all metric-compatible connections 
(cf. [6,16,20]). Moreover, (1.3) has recently been generalized to Riemannian vector bundles (cf. [5,17]), 
which reveals an intrinsic fact: the integral of the geometric Euler class is exactly the Euler characteristic 
in the Riemannian case. It is noticeable that Riemannian bundles and the tangent bundles of Riemannian 
manifolds are real Finsler bundles and (hence,) all these results can be derived from Theorem 1.1. Specifically, 
Theorem 1.1 yields the following two GBC theorems:

Theorem 1.2. (See [6,16].) Let (M, g) be an closed compact oriented Riemannian manifold. Given any 
metric-compatible connection D, we have ∫

M

ΩD = χ(M).
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