Contents lists available at ScienceDirect
Differential Geometry and its Applications

Erratum
 Erratum to: "On biminimal submanifolds in nonpositively curved manifolds" [Differ. Geom. Appl. 35 (2014) 1-8]

Yong Luo
School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China

A R T I C L E I N F O

Article history:

Received 30 May 2014
Received in revised form 15 March 2016
Available online 4 April 2016
Communicated by F. Fang

A B S T R A C T

We correct theorems of Luo (2014) [1], concerning nonexistence of complete biminimal submanifolds in nonpositive curvature space forms, and Lemma 4.2 in Luo (2014) [1].
© 2016 Elsevier B.V. All rights reserved.

In [1], the present author gave several results concerning the nonexistence of complete biminimal submanifolds in nonpositive curvature space forms. The main theorems in [1] are Theorems 1.3, 1.4 and 1.5. In the proof of Theorem 1.3 in [1] we used the inequality $b_{n} \leq \frac{1}{2} b_{2 n}$ of page 7 , line 3 to get the inequality of page 7 , line 7 . But this is wrong, because to get the inequality of page 7 , line 7 , the inequality we need is $b_{2 n} \leq \frac{1}{2} b_{n}$. In this note we give a proof of Theorem 1.3 (also Theorems 1.4, 1.5) by adding an additional condition.

Theorem 0.1. Let $f:(M, g) \rightarrow(N,\langle\rangle$,$) be a complete positive (that is \lambda>0$) biminimal submanifold (resp. hypersurface). Assume that the sectional curvature (resp. Ricci curvature) of $(N,\langle\rangle$,$) is nonpositive and$ $\int_{B_{\rho}\left(x_{0}\right)}|\vec{H}|^{p+2} d \mu_{g}$ is of at most polynomial growth of ρ, then f is minimal.

Here and in the following $B_{\rho}\left(x_{0}\right)$ denotes the geodesic ball on M centered at x_{0} of radius ρ. We say a function $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is of at most polynomial growth, if as $\rho \rightarrow \infty, f(\rho) \leq C\left(1+\rho^{s}\right)$ for some positive constant C independent of ρ and s a positive integer.

In particular, as a direct corollary of Theorem 0.1 we have

Theorem 0.2. Any complete positive biminimal submanifold in a Euclidean space which satisfies that $\int_{B_{\rho}\left(x_{0}\right)}|\vec{H}|^{p+2} d \mu_{g}$ is of at most polynomial growth of ρ is minimal.

[^0]http://dx.doi.org/10.1016/j.difgeo.2016.03.005
0926-2245/© 2016 Elsevier B.V. All rights reserved.

Furthermore for negative biminimal submanifolds in negative space forms $N(c)$ of sectional curvature $c \leq 0$ we have

Theorem 0.3. Let $f:\left(M^{m}, g\right) \rightarrow N^{n}(c)$ be a complete biminimal submanifolds in a space form $N(c)$ with constant sectional curvature $c \leq 0$ and assume that $\int_{B_{\rho}\left(x_{0}\right)}|\vec{H}|^{p+2} d \mu_{g}$ is of at most polynomial growth of ρ. If $\lambda>m c, f$ is minimal.

Proof of Theorem 0.1. From Eq. (1.7) in [1] we see that

$$
\begin{aligned}
\Delta|\vec{H}|^{2} & =2\left|\nabla^{\perp} \vec{H}\right|^{2}+2\left\langle\vec{H}, \Delta^{\perp} \vec{H}\right\rangle+2 \lambda|\vec{H}|^{2} \\
& =2\left|\nabla^{\perp} \vec{H}\right|^{2}+2 \sum_{i=1}^{m}\left\langle h\left(A_{\vec{H}} e_{i}, e_{i}\right), \vec{H}\right\rangle-2 \sum_{i=1}^{m}\left\langle R^{N}\left(e_{i}, \vec{H}\right) e_{i}, \vec{H}\right\rangle+2 \lambda|\vec{H}|^{2} \\
& =2\left|\nabla^{\perp} \vec{H}\right|^{2}+2 \sum_{i=1}^{m}\left\langle A_{\vec{H}} e_{i}, A_{\vec{H}} e_{i}\right\rangle-2 \sum_{i=1}^{m}\left\langle R^{N}\left(e_{i}, \vec{H}\right) e_{i}, \vec{H}\right\rangle+2 \lambda|\vec{H}|^{2} .
\end{aligned}
$$

Obviously if N has non-positive sectional curvature, $-\sum_{i=1}^{m}\left\langle R^{N}\left(e_{i}, \vec{H}\right) e_{i}, \vec{H}\right\rangle \geq 0$. Furthermore, if M is a hypersurface, we see that $-\sum_{i=1}^{m}\left\langle R^{N}\left(e_{i}, \vec{H}\right) e_{i}, \vec{H}\right\rangle=-\operatorname{Ric}^{N}(\vec{H}, \vec{H}) \geq 0$. Therefore

$$
\begin{align*}
\Delta|\vec{H}|^{2} & \geq 2\left|\nabla^{\perp} \vec{H}\right|^{2}+2 \sum_{i=1}^{m}\left\langle A_{\vec{H}} e_{i}, A_{\vec{H}} e_{i}\right\rangle+2 \lambda|\vec{H}|^{2} \\
& \geq 2\left|\nabla^{\perp} \vec{H}\right|^{2}+\frac{2}{m}|\vec{H}|^{4}+2 \lambda|\vec{H}|^{2}, \tag{0.1}
\end{align*}
$$

where in the last inequality we used $\sum_{i=1}^{m}\left\langle A_{\vec{H}} e_{i}, A_{\vec{H}} e_{i}\right\rangle \geq \frac{1}{m}|\vec{H}|^{4}$, which can be seen as follows: Let $x \in M$, when $\vec{H}(x)=0$, we are done. If $\vec{H}(x) \neq 0$, set $e_{m+t}=\frac{\vec{H}}{|\vec{H}|}$, then $\vec{H}(x)=H_{m+t}(x) e_{m+t}$ and $|\vec{H}|^{2}=H_{m+t}^{2}$. Hence we have at x,

$$
\begin{aligned}
\sum_{i=1}^{m}\left\langle A_{\vec{H}} e_{i}, A_{\vec{H}} e_{i}\right\rangle & =H_{m+t}^{2} \sum_{i=1}^{m}\left\langle A_{e_{m+t}} e_{i}, A_{e_{m+t}} e_{i}\right\rangle \\
& =H_{m+t}^{2}\left|B_{m+t}\right|_{h}^{2} \\
& \geq \frac{1}{m} H_{m+t}^{4} \\
& =\frac{1}{m}|\vec{H}|^{4} .
\end{aligned}
$$

Let $\gamma: M \rightarrow \mathbb{R}^{+}$be a cut off function such that

$$
\gamma=1 \quad \text { on } B_{\rho}, \gamma=0 \text { on } M \backslash B_{2 \rho}, \text { and }|\nabla \gamma| \leq \frac{C}{\rho}
$$

for some constant C independent of ρ. Here B_{ρ} is a geodesic ball of radius ρ on M. Then

$$
\begin{aligned}
& -\int_{M} \nabla|\vec{H}|^{2} \nabla\left(|\vec{H}|^{a} \gamma^{2}\right) d \mu_{g} \\
= & \int_{M} \Delta|\vec{H}|^{2}|\vec{H}|^{a} \gamma^{2} d \mu_{g}
\end{aligned}
$$

https://daneshyari.com/en/article/4605811

Download Persian Version:

https://daneshyari.com/article/4605811

Daneshyari.com

[^0]: DOI of original article: http://dx.doi.org/10.1016/j.difgeo.2014.05.001.
 E-mail address: yluo@amss.ac.cn.

