Contents lists available at ScienceDirect

Differential Geometry and its Applications

www.elsevier.com/locate/difgeo

An alternative proof of a theorem of Davis and Fang

Yueshan Xiong

Department of Mathematics, Capital Normal University, Beijing 100048, China

ARTICLE INFO

Article history: Received 2 November 2015 Received in revised form 29 May 2016 Available online 17 June 2016 Communicated by F. Fang

MSC: 57R19 57R20 55N91

Keywords: Almost flat manifold Infranilmanifold Equivariant bundle

1. Introduction

ABSTRACT

It is conjectured that every almost flat manifold bounds a compact manifold. Davis and Fang proved that every infranilmanifold with cyclic or generalized quaternionic holonomy bounds a compact manifold. In this paper, we give an alternative proof of this theorem by using equivariant topology.

@ 2016 Elsevier B.V. All rights reserved.

Farrell and Zdravkovska [4] and independently S.T. Yau [12] conjectured that an almost flat manifold bounds a compact manifold. This conjecture is still open. By the results of Gromov and Ruh [6,10], every almost flat manifold is diffeomorphic to an infranilmanifold which is a double coset space $\Gamma \setminus L \rtimes G/G$, where L is a simply connected nilpotent Lie group, G is a finite subgroup of $\operatorname{Aut}(L)$ and Γ is a discrete torsion-free cocompact subgroup of $L \rtimes G$ which maps epimorphically to G under the projection $L \rtimes G \to G$. The finite group G is called the holonomy group of $\Gamma \setminus L \rtimes G/G$. Therefore, we only need to consider this conjecture for infranilmanifolds.

Hamrick and Royster [7] proved the conjecture for flat manifolds. For almost flat manifolds, there are some results. Farrell and Zdravkovska [4] proved that the conjecture is true when the holonomy group Gis \mathbb{Z}_2 or G acts effectively on the center of L. Upadhyay [11] proved the conjecture when L is a simply connected 2-step nilmanifold, the holonomy group G is cyclic and G acts trivially on the center of L. The most recent progress is from Davis and Fang [3] who showed that the conjecture is true when the holonomy group G is a cyclic group or a generalized quaternion group.

E-mail address: yueshan_xiong@yahoo.com.

In this paper, we give an alternative proof of the following Theorem of Davis and Fang [3].

Theorem 1.1. [3] Let M be an infranilmanifold and Syl_2G be the 2-sylow subgroup of its holonomy group. If Syl_2G is cyclic or generalized quaternionic, then M is the boundary of a compact manifold.

In the following theorem, we prove the conjecture for a special case.

Theorem 1.2. Let $M = \Gamma \setminus L \rtimes G/G$ be an infranilmanifold. If L is a simply connected 2-step nilpotent Lie group with $\dim[L, L] = 1$ and G acts trivially on the center of L, then M is the boundary of a compact manifold.

In this paper, we only consider the cohomology with \mathbb{Z}_2 -coefficients, which is denoted by $H^*(X)$ for a space X.

2. Some technical lemmas

2.1. Some properties of equivariant cohomology of G spaces

In this subsection, we give several lemmas on the equivariant cohomology of G-spaces. Denote $X_G = EG \times_G X$ for any G space X.

Lemma 2.1. If X is a CW complex with a cellular $G \times \mathbb{Z}_2$ -action such that the subgroups $G \times e$ and $e \times \mathbb{Z}_2$ act freely, and if $\overline{X} = X/\mathbb{Z}_2$ and $\overline{X}_G = EG \times_G \overline{X}$, then there is an exact sequence

$$\cdots \longrightarrow H^{i}(\overline{X}_{G}) \xrightarrow{\cup \omega_{1}} H^{i+1}(\overline{X}_{G}) \longrightarrow H^{i+1}(X/G) \longrightarrow H^{i+1}(\overline{X}_{G}) \longrightarrow \cdots$$
(1)

with mod 2 coefficients which is also natural with respect to the equivariant maps in X.

Proof. For any CW complex X with a $G \times \mathbb{Z}_2$ action, there is an action of \mathbb{Z}_2 on $EG \times_G X$ defined by $[u, x] \cdot \alpha = [u, x \cdot \alpha]$, where $[u, x] \in EG \times_G X$ and $\alpha \in \mathbb{Z}_2$. If there exist an element $[u, x] \in EG \times_G X$ and an element $\alpha \in \mathbb{Z}_2$ such that $[u, x] \cdot \alpha = [u, x \cdot \alpha] = [u, x]$, then we have $x \cdot \alpha = x$. Therefore, if $G \times e$ and $e \times \mathbb{Z}_2$ act freely on X, then the action of \mathbb{Z}_2 on $EG \times_G X$ is free. The quotient space of $EG \times_G X$ by the action of \mathbb{Z}_2 is $EG \times_G \overline{X}$, where G acts on \overline{X} via $\overline{x} \cdot g = \overline{x \cdot g}$. So we have a \mathbb{Z}_2 covering $\widetilde{p} : EG \times_G X \to EG \times_G \overline{X}$. By the Gysin sequence [9, Corollary 12.3], there is an exact sequence

$$\cdots \longrightarrow H^{i}(\overline{X}_{G}) \xrightarrow{\cup \omega_{1}} H^{i+1}(\overline{X}_{G}) \xrightarrow{\widetilde{p}^{*}} H^{i+1}(X_{G}) \xrightarrow{\delta} H^{i+1}(\overline{X}_{G}) \longrightarrow \cdots,$$

where ω_1 is the first Stiefel–Whitney class of the covering $\tilde{p} : EG \times_G X \to EG \times_G \overline{X}$. Since G acts freely on X, the projection map $\pi_2 : EG \times_G X \to X/G$ is a homotopy equivalence. Thus $\pi_2^* : H^*(X/G) \to H^*(X_G)$ is an isomorphism. By replacing $H^*(X_G)$ by $H^*(X/G)$ in the above exact sequence, we get the exact sequence (1).

Let X, Y be CW complexes with $G \times \mathbb{Z}_2$ actions satisfying the conditions of the lemma and $h: X \to Y$ be an equivariant map. By the definition of the actions of \mathbb{Z}_2 on $EG \times_G X$ and $EG \times_G Y$, we have the commutative diagrams

$$\begin{array}{cccc} EG \times_G X & \xrightarrow{Id \times_G h} EG \times_G Y \\ & & & & \\ \tilde{p} & & & & \\ F & & & & \\ EG \times_G \overline{X} & \xrightarrow{Id \times_G \overline{h}} EG \times_G \overline{Y} \end{array} \qquad \qquad EG \times_G X \xrightarrow{Id \times_G h} EG \times_G Y \\ & & & & \\ EG \times_G \overline{X} & \xrightarrow{Id \times_G \overline{h}} EG \times_G \overline{Y} \qquad \qquad & \\ X/G & \xrightarrow{h'} Y/G, \end{array}$$

Download English Version:

https://daneshyari.com/en/article/4605819

Download Persian Version:

https://daneshyari.com/article/4605819

Daneshyari.com