Contents lists available at ScienceDirect

Differential Geometry and its Applications

www.elsevier.com/locate/difgeo

Let M be a complete noncompact immersed submanifold in a Hadamard manifold

 \overline{M} and Φ a positive-semidefinite symmetric endomorphism on M. Under our

assumptions, we obtain that either $\Phi \equiv 0$ or the growth of the integral

 \int_{B} trace(Φ) dVol is at least logarithmic. As the main application, we given

conditions to guarantee that the total σ_k -scalar curvature is infinite. Further

applications to convex functions and certain ruled manifolds are given.

Lower volume growth and total σ_k -scalar curvature estimates

Márcio Batista^{a,*,1}, Heudson Mirandola^b

 ^a Instituto de Matemática, Universidade Federal de Alagoas, Maceió, AL, CEP 57072-970, Brazil
^b Instituto de Matemática, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, CEP 21945-970, Brazil

ABSTRACT

ARTICLE INFO

Article history: Received 24 August 2013 Received in revised form 3 February 2015 Communicated by V. Souček

MSC: 53C42 53C40

Keywords: Volume growth Higher scalar curvature Submanifolds

1. Introduction

Let $f: M^m \to \overline{M}$ be an isometric immersion of an *m*-dimensional Riemannian manifold M in a Riemannian manifold \overline{M} and H be the second fundamental form of f. Let $\mathcal{S}(TM)$ be the C^1 bundle of the symmetric endomorphism on M and $\mathcal{S}^+(TM)$ be the subset of positive-semidefinite endomorphisms of $\mathcal{S}(TM)$. In 2002, J. Grosjean [11] introduced the following object associated with the immersion f.

Definition 1.1. The mean curvature vector field of the immersion f with respect to an endomorphism $\Phi \in S(TM)$ is the normal vector field $H_{\Phi}: M \to T^{\perp}M$ defined by the trace:

 $H_{\Phi} = \operatorname{trace} \left\{ (X, Y) \in TM \times TM \mapsto H(\Phi(X), Y) \right\}.$

© 2015 Elsevier B.V. All rights reserved.

^{*} Corresponding author.

E-mail addresses: mhbs@mat.ufal.br (M. Batista), mirandola@im.ufrj.br (H. Mirandola).

¹ The first author was supported by FAPEAL/Brazil (20110901-011-0025-0044) and CNPq/Brazil (456755/2014-4).

The object above reproduces naturally some important objects in the immersion theory. More precisely, it generalizes the mean curvature vector H and, in codimension one, it also includes the higher order mean curvatures of the immersion f, by considering the endomorphism Φ as the Newton's transformations associated with the shape operator of the hypersurface. So, the concept of H_{Φ} is very natural.

In the next definition, we recall the important concept of the divergence of a tensor, originally defined in the tensorial calculus.

Definition 1.2. The *divergence of* Φ is the tangent vector field on M defined by

$$\operatorname{div}(\Phi) = trace(\nabla \Phi).$$

We observe that if $\Phi = \lambda I$, where λ is a C^1 function on M and $I \in \mathcal{S}(TM)$ is the identity endomorphism, then it is easy to show that $\operatorname{div}(\Phi)$ coincides with the gradient vector field $\nabla \lambda$.

It is a well-known fact that a complete noncompact minimal submanifold in a Hadamard manifold must have infinite volume (see, for instance, Theorem 1 in Appendix of [9] or Lemma 1 of [5]). Our main theorem says the following:

Theorem 1.1. Let $f : M \to \overline{M}$ be an isometric immersion of a complete noncompact manifold M in a complete simply-connected manifold \overline{M} with nonpositive radial curvature with respect to some basis point $q_0 \in f(M)$. Let $\Phi \in S^+(TM)$. Assume that $\Phi(q_0) \not\equiv 0$ and, for some $\overline{\mu}_0 > 0$, it holds

$$\int_{B_{\mu}(q_0)} |H_{\Phi} + \operatorname{div}(\Phi)| \, r \, \mathrm{dVol} \le \int_{B_{\mu}(q_0)} \beta(r) \operatorname{trace}(\Phi) \, \mathrm{dVol}, \tag{1}$$

for all $\mu \geq \bar{\mu}_0$, where $r = d_{\bar{M}}(\cdot, q_0)$ is the distance in \bar{M} from q_0 and β is any nondecreasing C^1 function on $[0, \infty)$ with $0 \leq \beta(0) < 1$ and $\beta \leq 1$. Then, for all $\mu_0 > \bar{\mu}_0$, there exist c > 0, depending only on q_0 , μ_0 and M, such that

$$\int_{B_{\mu}(q_0)} \operatorname{trace}(\Phi) \, \mathrm{dVol} \ge c \int_{\mu_0}^{\mu} e^{-\int_{\mu_0}^{\tau} \frac{\beta(s)}{s} ds} d\tau$$

for all $\mu \geq \mu_0$. In particular, the growth of the integrals $\int_{B_{\mu}(q_0)} \operatorname{trace}(\Phi) \, \mathrm{dVol}$, with $\mu > \mu_0$, is at least logarithm.

As a direct consequence of Theorem 1.1, by taking $\beta = 0$ in (1), we obtain

Corollary 1.1. Let $f: M \to \overline{M}$ be an isometric immersion of a complete noncompact manifold M in a Hadamard manifold \overline{M} . Let $\Phi \in S^+(TM)$. Assume that $\operatorname{div}\Phi = H_{\Phi} = 0$. Then, either $\Phi = 0$ or, for all $\mu_0 > 0$ and $q \in M$ with $\Phi(q) \neq 0$, there exists $c = c(q, \mu_0, M) > 0$ such that

$$\int_{B_{\mu}(q)} \operatorname{trace}(\Phi) \,\mathrm{dVol} \ge c \,(\mu - \mu_0),$$

for all $\mu \geq \mu_0$.

Now, we will see different applications for Theorem 1.1 and Corollary 1.1. The first one is a non-direct application of Theorem 1.1 that will be proved in Section 3 below. Note that ruled surfaces in \mathbb{R}^n are examples among the next result applies.

Download English Version:

https://daneshyari.com/en/article/4605854

Download Persian Version:

https://daneshyari.com/article/4605854

Daneshyari.com