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We prove that the isoperimetric inequalities in the Euclidean and hyperbolic 
plane hold for all Euclidean, respectively hyperbolic, cone-metrics on a disk with 
singularities of negative curvature. This is a discrete analog of the theorems of Weil 
and Bol that deal with Riemannian metrics of curvature bounded from above by 0, 
respectively by −1. A stronger discrete version was proved by A.D. Alexandrov, with 
a subsequent extension by approximation to metrics of bounded integral curvature.
Our proof uses “discrete conformal deformations” of the metric that eliminate the 
singularities and increase the area. Therefore it resembles Weil’s argument that uses 
the uniformization theorem and the harmonic minorant of a subharmonic function.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

1.1. The main theorem

A Euclidean cone-metric g on a closed surface M is a path metric structure such that every point has a 
neighborhood isometric either to an open Euclidean disk or to a neighborhood of the apex of a Euclidean
cone with angle ω ∈ (0, +∞) \ {2π} around the apex. If M has non-empty boundary, then we require 
that every boundary point has a neighborhood isometric either to a half-disk or to a circular sector of 
angle θ ∈ (0, +∞) \ {π}. Hyperbolic cone-metrics on surfaces are defined similarly. A typical example is the 
metric space obtained by gluing together Euclidean (respectively hyperbolic) triangles. Conversely, every 
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cone-surface can be triangulated so that the metric induced on the triangles is Euclidean, respectively 
hyperbolic.

The set of cone-like interior and angle-like boundary points is called the singular locus of the metric g. 
An interior cone point with angle ω is said to have curvature 2π − ω.

Theorem 1. For every Euclidean cone-metric g on a disk B2 such that all cone points have negative curvatures 
the following inequality holds:

L2 ≥ 4πA (1)

where A is the area and L the perimeter of (B2, g).
For every hyperbolic cone-metric g on a disk B2 such that all cone points have negative curvatures the 

following inequality holds:

L2 ≥ 4πA + A2 (2)

Inequalities (1), respectively (2) hold for all Euclidean, respectively hyperbolic metrics on a disk, as a 
consequence of the isoperimetric inequalities in the Euclidean, respectively hyperbolic, plane. Therefore 
Theorem 1 is implied by the following proposition.

Proposition 2. For every Euclidean or hyperbolic cone-metric g on B2 such that all cone points have negative 
curvatures there is a Euclidean, respectively hyperbolic, metric on B2 with the same perimeter and larger 
area.

Stronger versions of Proposition 2 and Theorem 1 were proved by A.D. Alexandrov, see Section 1.3
below. The aim of the present article is to give a new proof that is simple and in some sense conceptually 
attractive.

1.2. The generalized Cartan–Hadamard conjecture

Theorem 1 can be viewed as the discrete analog of the following theorem.

Theorem 3. For every Riemannian metric on a disk B2 with the Gauss curvature K(x) ≤ 0 the Euclidean
isoperimetric inequality holds.

For every Riemannian metric on a disk B2 with K(x) ≤ −1 the hyperbolic isoperimetric inequality holds.

The first part was proved independently by Weil [15] and by Beckenbach and Radó [2]. The second part 
is due to Bol [4].

Aubin [1] and Gromov [9] conjectured that a similar result holds in higher dimensions: a simply con-
nected n-manifold with sectional curvature bounded above by κ satisfies the isoperimetric inequality of the 
space-form with curvature κ. As for now, only the cases n = 3 for any κ ≤ 0 [10] and n = 4 for κ = 0 [6]
have been verified. See [11] for a novel approach and new results.

1.3. Surfaces of bounded curvature in the sense of Alexandrov

A.D. Alexandrov’s stronger version of Theorem 1 is

L2 ≥ 2(2π − κ+)A− kA2, (3)
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