Contents lists available at [ScienceDirect](http://www.ScienceDirect.com/)

Differential Geometry and its Applications

www.elsevier.com/locate/difgeo

Conformally flat circle bundles over surfaces

Sebastian Heller

Mathematisches Institut, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany

A R T I C L E I N F O A B S T R A C T

Article history: Received 14 November 2013 Available online 5 March 2015 Communicated by F. Pedit

MSC: 53C24 53A30

Keywords: Conformally flat manifolds Circle bundles

1. Introduction

We consider compact oriented conformally flat Riemannian 3-manifolds *P* such that there exists a free isometric circle action $P \times S^1 \to P$. This gives rise to a principal S^1 -bundle $P \to M$ over a Riemannian surface *M* with principal connection. The condition that *P* is conformally flat can be written as a differential equation on *M* in terms of the curvature function *H* of this connection and the Gaussian curvature *K* of *M*:

$$
Hess H = H(H^2 - K)Id,
$$
\n(1)

$$
2K - 3H^2 = \alpha \tag{2}
$$

for some constant α . These equations are strongly related to the geometry of the surface. For example, integral curves of *grad H* are geodesics. We prove that around a regular critical point *p* of *H*, *H* itself depends only on the geodesic distance $r = d(., p)$ from p. The function H satisfies the equation $cH'(r) = L(r)$, where *c* is some constant and $L(r)$ is the length of the circle of distance *r* around *p*. Applying this observation we deduce that the curvature functions *H* and *K* must be constant. This enables us to give a full classification of conformally flat circle bundles over compact surfaces.

The author would like to thank his PhD thesis advisor Ulrich Pinkall.

<http://dx.doi.org/10.1016/j.difgeo.2015.02.004> 0926-2245/© 2015 Elsevier B.V. All rights reserved.

We consider Riemannian 3-manifolds *P* which admit a free isometric circle action and we compute the equations of conformal flatness of *P* in terms of the geometry of the fibration $P \to P/S^1$. This computation is applied in order to classify conformally flat circle bundles over compact oriented surfaces.

© 2015 Elsevier B.V. All rights reserved.

E-mail address: [heller@mathematik.uni-tuebingen.de.](mailto:heller@mathematik.uni-tuebingen.de)

2. Circle bundles

Definition 1. A Riemannian manifold (P, q) , together with a submersion $\pi: P \to M$, is called circle bundle with circle metric *q* if it is a principal bundle $S^1 \to P \to M$ such that S^1 acts by isometries.

The proposition below characterizes Riemannian manifolds *P* occurring as total spaces of circle bundles.

Proposition 2. *Every compact, oriented Riemannian* 3*-manifold P for which a Riemannian submersion* $\pi: P \to M$ to an oriented surface M with connected minimal fibers does exist, possesses a free isometric *circle action* $P \times S^1 \to P$ *, and vice versa.*

Let us first fix some notations. Let T be always the vector field in positive fiber direction of constant length 1 on the total space *P*. We will consider (locally defined) positive oriented orthonormal vector fields *A, B* on the base *M*, and denote their horizontal lifts on *P* by \hat{A} , \hat{B} . It is a basic fact that there exists function λ such that $e^{\lambda}(A - iB)$ is a (locally defined) holomorphic vector field on the surface. Note that $e^{\lambda}(A - iB)$ is holomorphic if and only if $[A, B] = B \cdot \lambda A - A \cdot \lambda B$.

The horizontal distribution given by $\mathcal{H} = \ker d\pi^{\perp}$ is invariant under the *S*¹-action and gives rise to a principal connection ω . The curvature Ω of this connection is an imaginary valued 2-form which is invariant under the $S¹$ action. Therefore, the function *H* defined by

$$
\Omega = iH\pi^* vol_M
$$

is constant along the fibers. We denote the corresponding function on the surface by *H*, too. Let *K* the Gaussian curvature (function) of the surface *M* with respect to the induced Riemannian metric *h* on *M*. For stating the formulas below we will use the endomorphism $\mathcal{J} \in End(TP)$ given by $X \mapsto T \times X$.

Proposition 3. Let $\hat{A}, \hat{B}, T, \lambda, H$ be given as above. The Levi-Civita connection of the total space of a circle *bundle* $P \rightarrow M$ *with circle metric g is determined by*

$$
\nabla T = \frac{1}{2} H \mathcal{J} \tag{3}
$$

$$
\nabla A = B \otimes g(., \frac{1}{2}HT + \mathcal{J}grad(\lambda \circ \pi)) + T \otimes g(., \frac{1}{2}HB)
$$
\n(4)

$$
\nabla B = -A \otimes g(., \frac{1}{2}HT + \mathcal{J}grad(\lambda \circ \pi)) - T \otimes g(., \frac{1}{2}HA). \tag{5}
$$

It is well-known that in dimension 3 the Riemannian curvature tensor *R* is entirely given by the Ricci tensor *Ric*. In our situation it is more convenient to work with the so-called Schouten tensor

$$
S := Ric - \frac{1}{4} scalId \in End(TP).
$$

Proposition 4. The Schouten tensor of the total space of a circle bundle $P \to M$ with circle metric q is given *by*

$$
S(T,T) = \left(-\frac{1}{2}K + \frac{5}{8}H^2\right)
$$

\n
$$
S(T, X) = g\left(-\frac{1}{2}\mathcal{J}grad H, X\right)
$$

\n
$$
S(X, Y) = \left(-\frac{3}{8}H^2 + \frac{1}{2}K\right)g(X, Y),
$$

where X and Y are arbitrary horizontal vectors and T, H, and K are defined as above.

Download English Version:

<https://daneshyari.com/en/article/4605896>

Download Persian Version:

<https://daneshyari.com/article/4605896>

[Daneshyari.com](https://daneshyari.com)