

Contents lists available at ScienceDirect

Differential Geometry and its Applications

www.elsevier.com/locate/difgeo

New homogeneous Einstein metrics on Stiefel manifolds ☆

Andreas Arvanitoveorgos a,*, Yusuke Sakane b, Marina Statha a

- ^a University of Patras, Department of Mathematics, GR-26500 Rion, Greece
- b Osaka University, Department of Pure and Applied Mathematics, Graduate School of Information Science and Technology, Toyonaka, Osaka 560-0043, Japan

ARTICLE INFO

Article history: Available online 5 February 2014 Communicated by O. Kowalski

MSC: primary 53C25 secondary 53C30, 13P10, 65H10, 68W30

Keywords:
Homogeneous space
Einstein metric
Stiefel manifold
Isotropy representation
Gröbner basis

ABSTRACT

We consider invariant Einstein metrics on the Stiefel manifold $V_q\mathbb{R}^n$ of all orthonormal q-frames in \mathbb{R}^n . This manifold is diffeomorphic to the homogeneous space $\mathrm{SO}(n)/\mathrm{SO}(n-q)$ and its isotropy representation contains equivalent summands. We prove, by assuming additional symmetries, that $V_4\mathbb{R}^n$ $(n\geqslant 6)$ admits at least four $\mathrm{SO}(n)$ -invariant Einstein metrics, two of which are Jensen's metrics and the other two are new metrics. Moreover, we prove that $V_5\mathbb{R}^7$ admits at least six invariant Einstein metrics, two of which are Jensen's metrics and the other four are new metrics.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

A Riemannian manifold (M, g) is called Einstein if it has constant Ricci curvature, i.e. $\operatorname{Ric}_g = \lambda \cdot g$ for some $\lambda \in \mathbb{R}$. A detailed exposition on Einstein manifolds can be found in [8,17] and [18]. General existence results are difficult to obtain and some methods are described in [9,10] and [19]. Also, in [4] the authors introduced a method for proving existence of homogeneous Einstein metrics by assuming additional symmetries.

In the present article we are interested in invariant Einstein metrics on homogeneous spaces G/H whose isotropy representation is decomposed into a sum of irreducible but possibly equivalent summands. By using the method of [4] we study homogeneous Einstein metrics on Stiefel manifolds.

The Stiefel manifolds are the homogeneous spaces $V_k \mathbb{R}^n = \mathrm{SO}(n)/\mathrm{SO}(n-k)$ and the simplest case is the sphere $S^{n-1} = \mathrm{SO}(n)/\mathrm{SO}(n-1)$, which is an irreducible symmetric space, therefore it admits up to scale a unique invariant Einstein metric. Concerning Einstein metrics on other Stiefel manifolds we review the

[☆] The second author was supported by JSPS KAKENHI Grant Number 25400071.

^{*} Corresponding author.

E-mail addresses: arvanito@math.upatras.gr (A. Arvanitoyeorgos), sakane@math.sci.osaka-u.ac.jp (Y. Sakane), statha@master.math.upatras.gr (M. Statha).

following: In [14] S. Kobayashi proved existence of an invariant Einstein metric on the unit tangent bundle $T_1S^n = SO(n)/SO(n-2)$. In [16] A. Sagle proved that the Stiefel manifolds $V_k\mathbb{R}^n = SO(n)/SO(n-k)$ admit at least one homogeneous Einstein metric. For $k \geq 3$ G. Jensen in [12] found a second metric. If n=3 the Lie group SO(3) admits a unique Einstein metric. For $n \geq 5$ A. Back and W.Y. Hsiang in [7] proved that SO(n)/SO(n-2) admits exactly one homogeneous Einstein metric. The same result was obtained by M. Kerr in [13] by proving that the diagonal metrics are the only invariant metrics on $V_2\mathbb{R}^n$ (see also [3,1]). The Stiefel manifold SO(4)/SO(2) admits exactly two invariant Einstein metrics ([2]). One is Jensen's metric and the other one is the product metric on $S^3 \times S^2$.

Finally, in [4] the first author, V.V. Dzhepko and Yu. G. Nikonorov proved that for s>1 and $\ell>k\geqslant 3$ the Stiefel manifold $\mathrm{SO}(sk+\ell)/\mathrm{SO}(\ell)$ admits at least four $\mathrm{SO}(sk+\ell)$ -invariant Einstein metrics, two of which are Jensen's metrics. The special case $\mathrm{SO}(2k+\ell)/\mathrm{SO}(\ell)$ admitting at least four $\mathrm{SO}(2k+\ell)$ -invariant Einstein metrics was treated in [5]. Corresponding results for the quaternionic Stiefel manifolds $\mathrm{Sp}(sk+\ell)/\mathrm{Sp}(\ell)$ were obtained in [6]. In the present paper we prove that $\mathrm{SO}(n)/\mathrm{SO}(n-4)$ admits two more $\mathrm{SO}(n)$ -invariant Einstein metrics and that $\mathrm{SO}(7)/\mathrm{SO}(2)$ admits four more $\mathrm{SO}(7)$ -invariant Einstein metrics.

2. G-Invariant metrics with additional symmetries

We review a construction originally introduced in [4]. Let G be a compact Lie group and H a closed subgroup so that G acts almost effectively on G/H. Let \mathfrak{g} , \mathfrak{h} be the Lie algebra of G and H and let $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{m}$ be a reductive decomposition of \mathfrak{g} with respect to some $\mathrm{Ad}(G)$ -invariant inner product on \mathfrak{g} . The orthogonal complement \mathfrak{m} can be identified with the tangent space $T_o(G/H)$, where o = eH. Any G-invariant metric g of G/H corresponds to an $\mathrm{Ad}(H)$ -invariant inner product $\langle \cdot, \cdot \rangle$ on \mathfrak{m} and vice versa. For G semisimple the negative of the Killing form B of \mathfrak{g} is an $\mathrm{Ad}(G)$ -invariant inner product on \mathfrak{g} , therefore we can choose the above decomposition with the respect to -B.

The normalizer $N_G(H)$ of H in G acts on G/H by $(\alpha, gH) \mapsto g\alpha^{-1}H$. For a fixed $\alpha \in N_G(H)$ this action induces a G-equivariant diffeomorphism $\varphi_\alpha : G/H \to G/H$. Let K be a closed subgroup of G with $H \subset K \subset G$ such that $K = L' \times H'$, where L', H' are subgroups of G with $H = \{e_{L'}\} \times H'$. It is clear that $K \subset N_G(H)$. Consider the group $L = L' \times \{e_{H'}\}$. Then the group $\widetilde{G} = G \times L$ acts on G/H by $(\alpha, \beta) \cdot gH = \alpha g\beta^{-1}H$ and the isotropy \widetilde{H} at eH is given as follows:

Lemma 2.1. (See [4, Lemma 2.1].) The isotropy subgroup \widetilde{H} is isomorphic to K.

Hence, we have the diffeomorphisms

$$G/H \cong (G \times L)/K = (G \times L)/(L' \times H') \cong \widetilde{G}/\widetilde{H}. \tag{1}$$

The elements of the set \mathcal{M}^G , of G-invariant metrics on G/H, are in 1–1 correspondence with $\mathrm{Ad}(H)$ -invariant inner products on \mathfrak{m} . We now consider $\mathrm{Ad}(K)$ -invariant inner products on \mathfrak{m} (and not only $\mathrm{Ad}(H)$ -invariant) with corresponding subset $\mathcal{M}^{G,K}$ of \mathcal{M}^G . Let $g \in \mathcal{M}^{G,K}$ and $\alpha \in K$. The diffeomorphism φ_{α} is an isometry of (G/H,g). The action of \widetilde{G} on (G/H,g) is isometric, so any metric in $\mathcal{M}^{G,K}$ can be identified as a metric in $\mathcal{M}^{\widetilde{G}}$, the set of \widetilde{G} -invariant metrics on $\widetilde{G}/\widetilde{H}$, and vice versa. Therefore, we have $\mathcal{M}^{\widetilde{G}} \subset \mathcal{M}^G$.

We consider the isotropy representation $\chi: H \to \operatorname{Aut}(\mathfrak{m})$ of G/H, which is the restriction of the adjoint representation of H on \mathfrak{m} . We assume that χ decomposes into a direct sum of irreducible sub-representations

$$\chi \cong \chi_1 \oplus \cdots \oplus \chi_s,$$

Download English Version:

https://daneshyari.com/en/article/4605965

Download Persian Version:

https://daneshyari.com/article/4605965

Daneshyari.com