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1. Introduction

A Riemannian manifold (M, g) is called Einstein if it has constant Ricci curvature, i.e. Ricy = A-g for some
A € R. A detailed exposition on Einstein manifolds can be found in [8,17] and [18]. General existence results
are difficult to obtain and some methods are described in [9,10] and [19]. Also, in [4] the authors introduced
a method for proving existence of homogeneous Einstein metrics by assuming additional symmetries.

In the present article we are interested in invariant Einstein metrics on homogeneous spaces G/H whose
isotropy representation is decomposed into a sum of irreducible but possibly equivalent summands. By using
the method of [4] we study homogeneous Einstein metrics on Stiefel manifolds.

The Stiefel manifolds are the homogeneous spaces VyR™ = SO(n)/SO(n — k) and the simplest case is the
sphere S"~! = SO(n)/SO(n — 1), which is an irreducible symmetric space, therefore it admits up to scale

a unique invariant Einstein metric. Concerning Einstein metrics on other Stiefel manifolds we review the
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following: In [14] S. Kobayashi proved existence of an invariant Einstein metric on the unit tangent bundle
T15™ = SO(n)/SO(n — 2). In [16] A. Sagle proved that the Stiefel manifolds VyR"™ = SO(n)/SO(n — k)
admit at least one homogeneous Einstein metric. For k > 3 G. Jensen in [12] found a second metric. If n = 3
the Lie group SO(3) admits a unique Einstein metric. For n > 5 A. Back and W.Y. Hsiang in [7] proved
that SO(n)/SO(n — 2) admits exactly one homogeneous Einstein metric. The same result was obtained
by M. Kerr in [13] by proving that the diagonal metrics are the only invariant metrics on VoR™ (see also
[3,1]). The Stiefel manifold SO(4)/ SO(2) admits exactly two invariant Einstein metrics ([2]). One is Jensen’s
metric and the other one is the product metric on S% x S2.

Finally, in [4] the first author, V.V. Dzhepko and Yu. G. Nikonorov proved that for s > 1 and
¢ > k > 3 the Stiefel manifold SO(sk + ¢)/SO({) admits at least four SO(sk + ¢)-invariant Einstein
metrics, two of which are Jensen’s metrics. The special case SO(2k + ¢)/SO(¢) admitting at least four
SO(2k + ¢)-invariant Einstein metrics was treated in [5]. Corresponding results for the quaternionic Stiefel
manifolds Sp(sk + £)/ Sp(¢) were obtained in [6]. In the present paper we prove that SO(n)/SO(n — 4) ad-
mits two more SO(n)-invariant Einstein metrics and that SO(7)/SO(2) admits four more SO(7)-invariant
Einstein metrics.

2. G-Invariant metrics with additional symmetries

We review a construction originally introduced in [4]. Let G be a compact Lie group and H a closed
subgroup so that G acts almost effectively on G/H. Let g, h be the Lie algebra of G and H and let g = hdm
be a reductive decomposition of g with respect to some Ad(G)-invariant inner product on g. The orthogonal
complement m can be identified with the tangent space T,(G/H), where o = eH. Any G-invariant metric g
of G/H corresponds to an Ad(H )-invariant inner product (-,-) on m and vice versa. For G semisimple the
negative of the Killing form B of g is an Ad(G)-invariant inner product on g, therefore we can choose the
above decomposition with the respect to —B.

The normalizer Ng(H) of H in G acts on G/H by (o, gH) — ga~'H. For a fixed o € Ng(H) this
action induces a G-equivariant diffeomorphism ¢, : G/H — G/H. Let K be a closed subgroup of G with
H C K C G such that K = L’ x H', where L', H' are subgroups of G with H = {ey.} x H'. It is clear
that K C Ng(H). Consider the group L = L’ x {ex/}. Then the group G = G x L acts on G/H by
(a,B) - gH = agB~'H and the isotropy H at eH is given as follows:

Lemma 2.1. (See [}, Lemma 2.1].) The isotropy subgroup H is isomorphic to K.
Hence, we have the diffeomorphisms
G/H=(GxL)/K=(GxL)/(LxH)=G/H. (1)

The elements of the set MY of G-invariant metrics on G/H, are in 1-1 correspondence with
Ad(H)-invariant inner products on m. We now consider Ad(K)-invariant inner products on m (and not
only Ad(H)-invariant) with corresponding subset M% X of MY. Let g € MK and a € K. The diffeo-
morphism ¢, is an isometry of (G/H, g). The action of G on (G/H, g) is isometric, so any metric in MK
can be identified as a metric in M, the set of G-invariant metrics on G / H, and vice versa. Therefore, we
have MS c MC.

We consider the isotropy representation y : H — Aut(m) of G/H, which is the restriction of the adjoint
representation of H on m. We assume that x decomposes into a direct sum of irreducible sub-representations
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giving rise to a decomposition
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