Contents lists available at ScienceDirect

Differential Geometry and its Applications

www.elsevier.com/locate/difgeo

A geodesic mapping and its field of symmetric linear endomorphisms

Elena S. Stepanova^{a,b,*}, Josef Mikeš^a, Irina I. Tsyganok^b

 ^a Department of Algebra and Geometry, Palacky University, 17. Listopadu 12, 77146 Olomouc, Czech Republic
^b Department of Mathematics, Finance University under the Government of Russian Federation,

Leningradsky Prospect 49-55, 125468 Moscow, Russian Federation

ARTICLE INFO

Article history: Received 19 December 2013 Received in revised form 18 March 2014 Available online 13 April 2014 Communicated by O. Kowalski

MSC: 53C20 53C21 53C24

Keywords: Riemannian manifold Geodesic mapping Linear endomorphism

0. Introduction

Let (M, g) and $(\overline{M}, \overline{g})$ be two Riemannian manifolds of equal dimensions. The diffeomorphism f: $(M, g) \to (\overline{M}, \overline{g})$ is called a *geodesic mapping* [1, p. 127] if it maps any geodesic of (M, g) onto geodesic in $(\overline{M}, \overline{g})$. Moreover, if this mapping preserves the natural parameters of geodesics, then f is called *affine* [2, p. 225].

It is well known [1, p. 167], [2, p. 121] that a geodesic mapping $f: (M, g) \to (\overline{M}, \overline{g})$ is defined through the tensor field A_f of type (1, 1). In the first section of the present paper we give a geometric interpretation of eigenvalues of the tensor field A_f . In the second section we consider a global aspect of the geometry of the geodesic mapping $f: (M, g) \to (\overline{M}, \overline{g})$ with respect to the trace of A_f .

* Corresponding author.

ABSTRACT

It is well known that a geodesic mapping $f: (M,g) \to (\overline{M},\overline{g})$ is defined through the tensor field A_f of type (1, 1). In the present paper we give a geometric interpretation of eigenvalue function of the tensor field A_f and consider a global aspect of the geometry of the geodesic mapping $f: (M,g) \to (\overline{M},\overline{g})$ with respect to the trace of A_f .

@ 2014 Elsevier B.V. All rights reserved.

E-mail addresses: stephelena@list.ru (E.S. Stepanova), josef.mikes@upol.cz (J. Mikeš), i.i.tsyganok@mail.ru (I.I. Tsyganok).

1. Geodesic mappings in terms of linear algebra

1.1. The necessary and sufficient condition for which an *n*-dimensional $(n \ge 2)$ Riemannian manifold (M, g) to admit a geodesic mapping onto another *n*-dimensional Riemannian manifold (\bar{M}, \bar{g}) has the following form of the differential equation (see Eq. (8) in [2, pp. 120–122] and (7.7) in [1, pp. 167–168]):

$$(\nabla_Z a)(X,Y) = \theta(X)g(Y,Z) + \theta(Y)g(X,Z), \tag{1.1}$$

where ∇_Z denotes covariant derivative with respect to a smooth vector field Z on (M, g), a is a smooth covariant regular symmetric tensor field of order 2 on (M, g) (defined explicitly in the subsequent Remark) and θ is a gradient-like form for which $\theta := 1/2$ grad(trace_g a). In addition, we note that if $\theta = 0$ then the geodesic mapping $f : (M, g) \to (\overline{M}, \overline{g})$ is affine.

Remark. (See [2, pp. 120–121], [1, pp. 167–168].) Let $f: (M,g) \to (\bar{M},\bar{g})$ be a geodesic mapping then in terms of local coordinate systems x^1, \ldots, x^n of (M,g) and $\bar{x}^1, \ldots, \bar{x}^n$ of (\bar{M},\bar{g}) we can suppose that f is represented by the equations $\bar{x}^1 = x^1, \ldots, \bar{x}^n = x^n$ for the corresponding points x and $\bar{x} = f(x)$. Also, let g_{ij} and \bar{g}_{ij} be local components of the Riemannian metric tensors g and \bar{g} for $i, j, k, l = 1, \ldots, n$. Denote by \bar{g}^{ij} the elements of the inverse matrix $\|\bar{g}_{ij}\|^{-1}$, then the tensor a associated with the geodesic mapping $f: (M,g) \to (\bar{M},\bar{g})$ is defined by $a_{ij} = e^{2\varphi}\bar{g}^{kl}g_{ik}g_{jl}$ where the function φ is defined by

$$\varphi = \frac{1}{2(n+1)} \left(\ln \det \|\bar{g}\| - \ln \det \|g\| \right).$$

Further we define the tensor field A_f , by setting $g(A_f X, Y) = a(X, Y)$ for arbitrary smooth tangent vector fields X and Y. In this case A_f is a self-adjoint section of End TM, i.e. $g(A_f X, Y) = g(A_f Y, X)$. Moreover, with respect to the above definition Eq. (1.1) can be rewritten as

$$(\nabla_Y A_f) X = g(X, Y) \xi + \theta(X) Y, \tag{1.2}$$

for arbitrary smooth vector fields X, Y and ξ is given by $g(\xi, X) = \theta(X)$ for all X.

1.2. Let $\lambda_1(x), \ldots, \lambda_n(x)$ be the eigenvalues (some of which may coincide) of the symmetric endomorphism A_f of the tangent space $T_x M$ at each $x \in M$. We can take an orthonormal basis e_1, \ldots, e_n of $T_x M$ such that $A_f e_i = \lambda_i(x), 1 \leq i \leq n$. Next, for an arbitrary $\lambda_i(x)$ we denote corresponding eigenspace by $D_{\lambda_i(x)} \subset T_x M$. It is well known that the geometric multiplicity of an eigenvalue $\lambda_i(x)$ is the dimension of the eigenspace $D_{\lambda_i(x)}$ associated to $\lambda_i(x)$, i.e. number of linearly independent eigenvectors with the eigenvalue $\lambda_i(x)$.

We shall denote by M_f a connected component of the open dense subset of M, which consists of points at which the number of all distinct eigenvalues $\lambda_1(x), \ldots, \lambda_r(x)$ of A_f is locally constant and the geometric multiplicities $n_1(x), \ldots, n_r(x)$ of the eigenvalues $\lambda_1(x), \ldots, \lambda_r(x)$ that are also locally constant. In this case, the eigenvalues of A_f form mutually distinct smooth eigenvalue functions as λ_{α} and, the assignment $x \in M_f \to D_{\lambda_{\alpha}(x)} \subset T_x M_f$ for all $x \in M_f$ defines a smooth eigenspace distribution $D_{\lambda_{\alpha}}$ of A_f . Then the following theorem is true.

Theorem 1. Let $f: (M,g) \to (\overline{M},\overline{g})$ be a geodesic mapping with its field of linear symmetric endomorphisms A_f and λ_{α} is an eigenvalue function of A_f , defined in a connected component of $M_f \subset M$. If the geometric multiplicity n_{α} of λ_{α} is at least two, then the eigenspace distribution $D_{\lambda_{\alpha}}$ is integrable and each maximal integral manifold of $D_{\lambda_{\alpha}}$ is an umbilical submanifold of (M,g) and λ_{α} is constant.

Proof. Let $\lambda_{\alpha} = \lambda_{\alpha}(x)$ be an arbitrary eigenvalue functions of A_f , defined in a connected component of $M_f \subset M$. If the geometric multiplicity n_{α} of λ_{α} is at least two, then dim $D_{\lambda_{\alpha}} = n_{\alpha} > 1$ for eigenspace

Download English Version:

https://daneshyari.com/en/article/4605968

Download Persian Version:

https://daneshyari.com/article/4605968

Daneshyari.com