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From geometrical study of horospheres we obtain, among asymptotically harmonic
Hadamard manifolds, a rigidity theorem of the complex hyperbolic space CHm

with respect to volume entropy. We also characterize CHm horospherically in terms
of holomorphic curvature boundedness. Corresponding quaternionic analogues are
obtained.
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1. Introduction

Geometry of horospheres and their defining function, the Busemann function, is one of interesting geo-
metrical subjects for nonpositively curved manifolds. Let (X, g) be an n-dimensional Hadamard manifold,
i.e., a simply connected, complete Riemannian manifold of nonpositive curvature. In (X, g) a horosphere is
defined as a level hypersurface H = {x ∈ X | Bθ(x) = const.} of the Busemann function Bθ associated with
a geodesic γ = γ(t) which goes to an ideal point θ ∈ ∂X at infinity. The gradient field ∇Bθ and Hessian
∇ dBθ, respectively, stand for a unit normal field and the second fundamental form of the horosphere H
whose hypersurface geometry can be described in terms of ∇ dBθ.

Horospheres of a typical Hadamard manifold have geometrically nice properties. In fact, a horosphere of
the real hyperbolic space RHn is flat, totally umbilic with constant principal curvature, and a horosphere of
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the complex hyperbolic space CHm is characterized, from the results in [6], as one of Hopf real hypersurfaces
with constant principal curvature among other tubular hypersurfaces. See also [7,8,14].

Taking an arbitrary real number t as level value of a Busemann function, we obtain, for a fixed θ ∈ ∂X,
a one parameter family of horospheres. In fact, for a given Bθ associated with a geodesic γ of [γ] = θ

the horospheres {H(γ(t),θ) = B−1
θ (−t) | t ∈ R}, each of which passes through γ(t) constitute a foliation

of the ambient manifold X invariant by the geodesic flow. Geometric behavior of one parameter family of
horospheres can be investigated by means of behavior of stable (or unstable) Jacobi tensor fields in time t

along a geodesic γ.
An extremely important feature of stable (or unstable) Jacobi tensor fields is that along a geodesic γ

tending to a θ ∈ ∂X they induce a one parameter family of shape operators St, defined on the one parameter
family of horospheres {H(γ(t),θ) | t ∈ R}. A one parameter family of shape operators {St | t ∈ R} is a solution
of the Riccati equation (for its precise definition see Section 3) so that {St | t ∈ R} gives an appropriate tool
for studying hypersurface geometry of horospheres. Here, we give an additional remark that the stable (or
unstable) Jacobi tensor fields are also important in dynamical system of the geodesic flow on the unit sphere
bundle of X. For this and behavior of the Anosov geodesic flow which is closely related to horospheres on
a negatively curved closed manifolds, we refer to [5,13,18,22,35,37,49].

The purpose of this article is to present, from hypersurface geometry applied to one parameter families of
horospheres, volume entropy rigidity theorems for the complex hyperbolic space CHm and the quaternionic
hyperbolic space HHm (Theorems 1.5 and 1.7) and theorems which characterize CHm and HHm in terms
of the value of second fundamental form h(·, ·) associated with structure vectors (Theorems 1.8 and 1.9).

In the volume entropy rigidity theorems an Hadamard manifold is assumed to be asymptotically harmonic.
Here

Definition 1.1. (See [40].) An Hadamard manifold (X, g) is called asymptotically harmonic if ΔBθ(x) is a
constant −c for each x ∈ X and θ ∈ ∂X, where Δ = −∇i∇i is the Laplacian of the metric g.

The asymptotical harmonicity is equivalent to saying that the mean curvature of all horospheres in X

is commonly constant −c. Here, by “mean” one means the sum of all principal curvatures. Furthermore
(X, g) is asymptotically harmonic if and only if the positive function defined by P (x, θ) = exp{−cBθ(x)} is
harmonic on X for any θ ∈ ∂X.

The motivation to our study is properly geometrical understanding of asymptotically harmonic Hadamard
manifolds, since asymptotically harmonic manifolds appear in Fisher information geometry which plays a
statistical role in the space P+(∂X, dθ) of probability measures on the ideal boundary ∂X of an Hadamard
manifold (X, g). As Theorem 1.3 in [31] illustrated, the constant c > 0 in Definition 1.1 appears as a
homothety constant of the homothety map Φ : (X, g) → (P+(∂X, dθ), G), where G is statistically defined
metric over P+(∂X, dθ), called Fisher information metric (see [1,23,31,34]).

Theorem 1.2. (See [31].) Assume that an Hadamard manifold (X, g) admits a normalized Poisson kernel
P (x, θ) (the fundamental solution to the Dirichlét problem at the ideal boundary; Δu = 0, u|∂X = f). Let Φ
be a map from X to the space P+(∂X, dθ), defined by x �→ μ(x) = P (x, θ) dθ.

Assume that the map Φ fulfills Φ∗G = c2

n g (c > 0 is a constant) and further Φ is a harmonic map. Then,
the Poisson kernel can be described as P (x, θ) = exp{−cBθ(x)} in terms of Bθ (hence, ΔBθ = −c, so (X, g)
turns out to be asymptotically harmonic), and moreover (X, g) satisfies the axiom of visibility (see [20] for
the notion of visibility).

The asymptotical harmonicity constant c appearing as the homothety constant in the above theorem has
another geometrical meaning. The constant c coincides with the volume entropy ρ(X) of X, as indicated
in [33].



Download English Version:

https://daneshyari.com/en/article/4605969

Download Persian Version:

https://daneshyari.com/article/4605969

Daneshyari.com

https://daneshyari.com/en/article/4605969
https://daneshyari.com/article/4605969
https://daneshyari.com

