Contents lists available at ScienceDirect

Differential Geometry and its Applications

www.elsevier.com/locate/difgeo

Fiber product preserving bundle functors of vertical type

J. Kurek^{a,*}, W.M. Mikulski^b

^a Institute of Mathematics, UMCS Lublin, pl. M. Curie Sklodowska 1, Lublin, Poland Institute of Mathematics, Jagiellonian University, Lojasiewicza 6, 30 348 Kraków, Poland

ARTICLE INFO

Article history: Received 20 November 2013 Available online 3 May 2014 Communicated by I. Kolář

MSC: 58A20 58A32

Keywords: Fiber product preserving bundle functor Weil algebra Vertical Weil bundle

0. Introduction

All manifolds are assumed to be without boundaries, second countable, Hausdorff and smooth, and maps to be of \mathcal{C}^{∞} .

The general concept of bundle functors (and their natural transformations) on a local category $\mathcal C$ over manifolds can be found in Sect. 18 in [6]. We need this concept in the case $\mathcal{C} = \mathcal{M} f_m$ or $\mathcal{C} = \mathcal{F} \mathcal{M}_m$, where $\mathcal{M}f_m$ is the category of all *m*-dimensional manifolds and their embeddings and \mathcal{FM}_m is the category of all fibred manifolds with m-dimensional bases and all fibred maps with embeddings as base maps. Thus a bundle functor F on \mathcal{FM}_m is a functor $F:\mathcal{FM}_m\to\mathcal{FM}$ such that the value FY of Y is a fibred manifold $\pi_Y: FY \to Y$ for any \mathcal{FM}_m -object $p: Y \to M$, the value $Ff: FY \to FY^1$ of $f: Y \to Y^1$ is a fiber map covering f for any \mathcal{FM}_m -map $f: Y \to Y^1$, and $Fi_U: FU \to \pi_Y^{-1}U$ is a diffeomorphisms for the inclusion map $i_U: U \to Y$ of an open subset U of Y. The definition of bundle functors on $\mathcal{M}f_m$ is quite similar (we replace \mathcal{FM}_m by $\mathcal{M}f_m$).

Corresponding author.

ABSTRACT

We extend the concept of vertical Weil functors V^A corresponding to Weil algebras Ato the one of generalized vertical Weil functors V^A on \mathcal{FM}_m corresponding to Weil algebra bundle functors A on $\mathcal{M}f_m$. Next, we show that the fiber product preserving bundle functors F on \mathcal{FM}_m of vertical type are the generalized vertical Weil functors V^A on \mathcal{FM}_m . That F is of vertical type it means that $F_x f: F_x Y \to F_x Y^1$ depends only on $f_x: Y_x \to Y_x^1$ for any \mathcal{FM}_m objects Y and Y_1 with the same base and any \mathcal{FM}_m -map $f: Y \to Y^1$ with the identity as the base map.

© 2014 Elsevier B.V. All rights reserved.

E-mail addresses: kurek@hektor.umcs.lublin.pl (J. Kurek), Wlodzimierz.Mikulski@im.uj.edu.pl (W.M. Mikulski).

A bundle functor F on \mathcal{FM}_m is of vertical type if for any \mathcal{FM}_m -objects Y and Y^1 with the same basis M, any $x_o \in M$ and any \mathcal{FM}_m -map $f: Y \to Y_1$ covering the identity of M the restriction $F_{x_o}f: F_{x_o}Y \to F_{x_o}Y^1$ of Ff depends on $f_{x_o}: Y_{x_o} \to Y_{x_o}^1$, only.

A bundle functor F on \mathcal{FM}_m is fiber product preserving if $F(Y \times_M Y^1) = FY \times_M FY^1$ for any \mathcal{FM}_m -objects Y and Y^1 with the same base M.

A natural transformation $\eta: F \to F^1$ between bundle functors on \mathcal{FM}_m is a family of maps $\eta_Y: FY \to F^1Y$ for any \mathcal{FM}_m -manifolds Y such that $F^1f \circ \eta_Y = \eta_{Y^1} \circ Ff$ for any \mathcal{FM}_m -map $f: Y \to Y^1$. (One can show that then $\eta_Y: FY \to F^1Y$ is a fibred map covering the identity map id_Y for any \mathcal{FM}_m -manifold Y [6].)

A Weil algebra is a finite dimensional real local commutative algebra A with unity (i.e. $A = \mathbf{R}.1 \oplus N_A$, where N_A is a finite dimensional ideal of nilpotent elements).

In [9], A. Weil introduced the concept of near A points on a manifold M as an algebra homomorphisms of the algebra $C^{\infty}(M, \mathbf{R})$ of smooth functions on M into a Weil algebra A. Nowadays the space $T^A M$ of all near A-points on M is called a Weil bundle. D. Eck (see [2]), O.O. Luciano (see [8]) and G. Kainz and P.W. Michor (see [4]) proved independently that the product preserving bundle functors G on the category $\mathcal{M}f$ of all manifolds and maps (i.e. $G(M \times M^1) \cong GM \times GM^1$ for all manifolds M and M^1) are the Weil functors T^A for Weil algebras $A = G\mathbf{R}$, and that the natural transformations $\mu : G \to G^1$ between product preserving bundle functors on $\mathcal{M}f$ are in bijection with the algebra homomorphisms $\mu_{\mathbf{R}} : G\mathbf{R} \to G^1\mathbf{R}$.

A Weil algebra bundle functor on $\mathcal{M}f_m$ is a bundle functor $A: \mathcal{M}f_m \to \mathcal{F}\mathcal{M}$ such that A_xM is a Weil algebra and $A_xf: A_xM \to A_{f(x)}N$ is an algebra isomorphism for any $\mathcal{M}f_m$ -map $f: M \to N$ between *m*-manifolds *M* and *N* and any point $x \in M$ (or shortly and more precisely, *A* is a bundle functor from $\mathcal{M}f_m$ into the category of all Weil algebra bundles and their algebra bundle maps).

A natural transformation between Weil algebra bundle functors A and A^1 on $\mathcal{M}f_m$ is a natural transformation $\varphi: A \to A^1$ between bundle functors such that $(\varphi_M)_x: A_x M \to A_x^1 M$ is an algebra homomorphism for any *m*-manifold M and any point $x \in M$.

We have the following examples of Weil algebra bundle functors on $\mathcal{M}f_m$.

- (i) The trivial Weil algebra bundle functor A on $\mathcal{M}f_m$ given by $AM = M \times A$ and $Af = f \times id_A$, where A is a fixed Weil algebra.
- (ii) The Weil algebra bundle functor A on $\mathcal{M}f_m$ given by $AM = (\bigwedge TM)^0$ and $Af = \bigwedge Tf_{|(\bigwedge TM)^0}$, where $\bigwedge TM = (\bigwedge TM)^0 \oplus (\bigwedge TM)^1 = \bigcup_{x \in M} \bigwedge T_x M$ is the Grassmann algebra bundle of the tangent bundle TM and $(\bigwedge TM)^0$ is the even degree subalgebra bundle.
- (iii) In the previous example we can replace the tangent functor T by an arbitrary vector bundle functor G on $\mathcal{M}f_m$.
- (iv) The Weil algebra bundle functor A on $\mathcal{M}f_m$ given by $AM = J^r(M, \mathbf{R})$ and $Af = J^r(f, id_{\mathbf{R}})$.
- (v) We can apply fibre-wise tensor product to the above examples of Weil algebra bundle functors on $\mathcal{M}f_m$.

In Example 1 of the present note, given a Weil algebra bundle functor A on $\mathcal{M}f_m$, we construct canonically a fiber product preserving bundle functor V^A on \mathcal{FM}_m of vertical type by

$$V^A Y = \bigcup_{x \in M} T^{A_x M} Y_x.$$

We call it the generalized vertical Weil functor corresponding to A.

In this way, we obtain a functor

$$\mathcal{V}: \mathcal{WABF}_m \to \mathcal{VFPBF}_m$$

Download English Version:

https://daneshyari.com/en/article/4605977

Download Persian Version:

https://daneshyari.com/article/4605977

Daneshyari.com