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An exponential family is an important class of statistical models in statistical 
sciences. In information geometry, it is known that an exponential family naturally 
has dualistic Hessian structures. A deformed exponential family is a statistical model 
which is a generalization of exponential families. A deformed exponential family 
naturally has two kinds of dualistic Hessian structures. In this paper, such Hessian 
geometries are summarized.
In addition, a deformed exponential family has a generalized conformal structure 
of statistical manifolds. In the case of q-exponential family, which is a special class 
of deformed exponential families, the family naturally has two kinds of different 
Riemannian metrics which are obtained from conformal transformations of Hessian 
metrics. Then it is showed that a q-exponential family is a Riemannian manifold of 
constant curvature.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

An exponential family is an important statistical model. For example, the set of all normal distributions, 
all gamma distributions, etc. are exponential families. Such a statistical model is applied to various fields of 
statistical sciences (cf. [1, Chapters 4–8]). In information geometry, it is known that an exponential family is 
a Hessian manifold [17, Chapter 6], which is also called a dually flat space [1, Chapter 3] and a flat statistical 
manifold [7]. In the Hessian geometry, a Riemannian metric and a pair of dualistic affine connections are 
derived from some potential function, which is formally similar to Kählerian geometry.

A deformed exponential family is a generalization of exponential families, which was introduced in 
anomalous statistical physics [14]. (See also [15, Part II], and [20, Chapter 3].) In anomalous statistics, 
we consider two kinds of expectations of random variables, one is the standard expectation and other one 
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is the expectation with respect to the escort distribution. From these two expectations, we can naturally 
define two kinds of dualistic Hessian structures on a deformed exponential family. In addition, from the 
normalization of escort distribution, we can define a Riemannian metric which is conformally equivalent to 
the Hessian metric.

In this paper, we summarize geometry of such two kinds of Hessian structures and conformal structures 
on deformed exponential families. Our Hessian geometries give geometric interpretations of generalization 
of expectation clearly. (See also [9,10] and [11].)

A q-exponential family is a typical example of deformed exponential families. It is important in anoma-
lous statistics and is applied to the theory of complex systems [20]. In particular, a q-normal distribution is 
a generalization of normal distribution in our framework. Then we often focus geometry of q-normal distri-
butions in this paper. Even though a deformed exponential family has two different conformal structures, 
we show that the set of all q-normal distributions is regarded as a space of constant curvature in both cases.

2. Statistical manifolds

In this paper, we assume that all the objects are smooth, and a manifold M is an open domain in Rn.
Let (M, h) be a semi-Riemannian manifold. That is, h is a nondegenerate (0, 2)-tensor field, which is not 

necessary to be positive definite. In the case we emphasize that the metric is positive definite, we denote it 
by g rather than h. Let ∇ be a torsion-free affine connection on M . We say that the triplet (M, ∇, h) is a 
statistical manifold if ∇h is totally symmetric [7]. For a statistical manifold (M, ∇, h), the dual connection
∇∗ of ∇ with respect to h is defined by

Xh(Y,Z) = h(∇XY,Z) + h
(
Y,∇∗

XZ
)
,

where X, Y and Z are arbitrary vector fields on M . We can check that (∇∗)∗ = ∇ and ∇(0) = (∇ +∇∗)/2 is 
the Levi-Civita connection with respect to h. We define a totally symmetric (0, 3)-tensor filed C by C = ∇h. 
The tensor field C is called the cubic form for (M, ∇, h).

We say that a statistical manifold (M, ∇, h) is flat if ∇ is flat. In this case, the dual connection ∇∗

is also flat. Hence the quadruplet (M, h, ∇, ∇∗) is called a dually flat space [1, Section 3.3]. For a flat 
statistical manifold (M, ∇, h), suppose that {θi} is a ∇-affine coordinate system on M , that is, the connection 
coefficients Γ k

ij of ∇ vanish everywhere on M . Then there exists a ∇∗-affine coordinate system {ηi} such 
that

h

(
∂

∂θi
,

∂

∂ηj

)
= δij .

We call {ηi} the dual coordinate system of {θi} with respect to h. The following proposition, called the 
Legendre duality, is important in information geometry [1, Chapter 3].

Proposition 2.1. Let (M, ∇, h) be a flat statistical manifold. Suppose that {θi} is a ∇-affine coordinate 
system, and {ηi} is the dual coordinate system of {θi}. Then there exist functions ψ and φ on M such that

∂ψ

∂θi
= ηi,

∂φ

∂ηi
= θi, ψ(p) + φ(p) −

n∑
i=1

θi(p)ηi(p) = 0,

hij = ∂2ψ

∂θi∂θj
, hij = ∂2φ

∂ηi∂ηj
,

where p is an arbitrary point in M , (hij) is the component matrix of a semi-Riemannian metric h with 
respect to {θi}, and (hij) is the inverse matrix of (hij).
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