Contents lists available at ScienceDirect

Differential Geometry and its Applications

www.elsevier.com/locate/difgeo

On Matsumoto metrics of scale flag curvature $\stackrel{\Rightarrow}{\sim}$

Xiaoling Zhang

College of Mathematics and Systems Science, Xinjiang University, Urumqi, Xinjiang Province, 830046, PR China

ARTICLE INFO

Article history: Received 27 November 2013 Received in revised form 6 March 2014 Available online 11 April 2014 Communicated by Z. Shen

MSC: 53C60 53B40

Keywords: Finsler metric Matsumoto metric Scalar flag curvature Projectively flat

1. Introduction

In Finsler geometry, there are several important geometric quantities. In this paper, our main focus is on the flag curvature.

For a Finsler manifold (M, F), the flag curvature K at a point x is a function of tangent planes $P \subseteq T_x M$ and nonzero vectors $y \in P$. This quantity tells us how curved the space is. When F is Riemannian, K depends only on the tangent plane $P \subseteq T_x M$ and is just the sectional curvature in Riemannian geometry. A Finsler metric F is said to be of scalar flag curvature if the flag curvature K at a point x is independent of the tangent plane $P \subseteq T_x M$, that is, the flag curvature K is a scalar function on the slit tangent bundle $TM \setminus \{0\}$. It is known that every locally projectively flat Finsler metric is of scalar flag curvature. However, the converse is not true.

 (α, β) -metrics form a special and important class of Finsler metrics which can be expressed in the form $F = \alpha \phi(s), \ s = \frac{\beta}{\alpha}$, where $\alpha = \sqrt{a_{ij}(x)y^iy^j}$ is a Riemannian metric, $\beta = b_i(x)y^i$ is a 1-form on M and

 $\label{eq:http://dx.doi.org/10.1016/j.difgeo.2014.03.002 \\ 0926-2245/© 2014 Elsevier B.V. All rights reserved.$

ABSTRACT

This paper contributes to the study of the Matsumoto metric $F = \frac{\alpha^2}{\alpha - \beta}$, where α is a Riemannian metric and β is a one form. It is shown that such a Matsumoto metric F is of scalar flag curvature if and only if F is projectively flat.

@ 2014 Elsevier B.V. All rights reserved.

 $^{^{\}rm \pm}$ Partially supported by NNSFC (No. 11171297).

E-mail address: xlzhang@ymail.com.

 $\phi(s)$ is a C^{∞} positive function satisfying (2.3) on some open interval. In particular, when $\phi(s) = \frac{1}{1-s}$, the Finsler metric $F = \frac{\alpha^2}{\alpha-\beta}$ is called a Matsumoto metric, which was first introduced by M. Matsumoto to study the time it takes to negotiate any given path on a hillside (cf. [1]). Recently, some researchers have studied Matsumoto metrics [8,9,18,17].

Randers metrics are the simplest (α, β) -metrics. Bao, etc., finally classifies Randers metrics of constant flag curvature by using the navigation method (see [2]). Further, Shen, etc., classifies Randers metrics of weakly isotropic flag curvature (see [12]). There are Randers metrics of scalar flag curvature which are not of weakly isotropic flag curvature or not locally projectively flat (see [3,11]). Besides, some relevant researches are referred to [5,10,14], under additional conditions. So far, Randers metrics of scalar flag curvature are still unknown. Kropina metrics and *m*-Kropina metrics have been recently received more attention (see [13,15,16]).

Our main result concerns Matsumoto metrics of scalar flag curvature.

Theorem 1.1. Let $F = \frac{\alpha^2}{\alpha - \beta}$ be a non-Riemannian Matsumoto metric on an n-dimensional manifold M, $n \ge 3$. Then F is of scalar flag curvature if and only if F is projectively flat, i.e., α is locally projectively flat and β is parallel with respect to α .

Li obtains that an $n \ (\geq 3)$ -dimensional non-Riemannian Matsumoto metric is projectively flat if and only if α is locally projectively flat and β is parallel with respect to α (see [7]). It is known that α is locally projectively flat is equivalent to that α is of constant curvature. Hence, a Matsumoto metric, which is projectively flat (i.e., of scalar flag curvature), must be locally Minkowskian.

The content of this paper is arranged as follows. In Section 2 we introduce essential curvatures of Finsler metrics, as well as notations and conventions. And we give basic formulas for proofs of theorems in the following section. In Section 4 the characterization of scalar flag curvature is given under the assumption that the dual of β , with respect to α , is a constant Killing vector field. By using it, Theorem 1.1 is proved in Section 5.

2. Preliminaries

In this section, we give a brief description of several geometric quantities in Finsler geometry. See [4] in detail.

Let F be a Finsler metric on an n-dimensional smooth manifold M and $(x, y) = (x^i, y^i)$ the local coordinates on the tangent bundle TM. The geodesics of F are locally characterized by a system of second order ordinary differential equations

$$\frac{d^2x^i}{dt^2} + 2G^i\left(x(t), \frac{dx(t)}{dt}\right) = 0,$$

where

$$G^{i} = \frac{1}{4}g^{ij} \{ [F^{2}]_{x^{k}y^{j}}y^{k} - [F^{2}]_{x^{j}} \}.$$

 G^i are called spray coefficients of F.

The Riemann curvature R (in local coordinates $R^i{}_k \frac{\partial}{\partial x^i} \otimes dx^k$) of F is defined by

$$R^{i}{}_{k} = 2\frac{\partial G^{i}}{\partial x^{k}} - \frac{\partial^{2} G^{i}}{\partial x^{j} \partial y^{k}}y^{j} + 2G^{j}\frac{\partial^{2} G^{i}}{\partial y^{j} \partial y^{k}} - \frac{\partial G^{i}}{\partial y^{j}}\frac{\partial G^{j}}{\partial y^{k}}.$$

It is known that F is of scalar flag curvature if and only if, in a local coordinate system,

Download English Version:

https://daneshyari.com/en/article/4606077

Download Persian Version:

https://daneshyari.com/article/4606077

Daneshyari.com