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1. Introduction

In Finsler geometry, there are several important geometric quantities. In this paper, our main focus is
on the flag curvature.

For a Finsler manifold (M, F'), the flag curvature K at a point x is a function of tangent planes P C T, M
and nonzero vectors y € P. This quantity tells us how curved the space is. When F' is Riemannian, K depends
only on the tangent plane P C T, M and is just the sectional curvature in Riemannian geometry. A Finsler
metric F is said to be of scalar flag curvature if the flag curvature K at a point z is independent of the
tangent plane P C T, M, that is, the flag curvature K is a scalar function on the slit tangent bundle
TM\{0}. Tt is known that every locally projectively flat Finsler metric is of scalar flag curvature. However,
the converse is not true.

(a, B)-metrics form a special and important class of Finsler metrics which can be expressed in the form
F = a¢(s), s = g, where o = \/m is a Riemannian metric, 8 = b;(z)y’ is a 1-form on M and
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@(s) is a C'° positive function satisfying (2.3) on some open interval. In particular, when ¢(s) = ﬁ, the
Finsler metric F' = aa—jﬁ is called a Matsumoto metric, which was first introduced by M. Matsumoto to
study the time it takes to negotiate any given path on a hillside (cf. [1]). Recently, some researchers have
studied Matsumoto metrics [8,9,18,17].

Randers metrics are the simplest (o, 8)-metrics. Bao, etc., finally classifies Randers metrics of constant
flag curvature by using the navigation method (see [2]). Further, Shen, etc., classifies Randers metrics of
weakly isotropic flag curvature (see [12]). There are Randers metrics of scalar flag curvature which are not of
weakly isotropic flag curvature or not locally projectively flat (see [3,11]). Besides, some relevant researches
are refereed to [5,10,14], under additional conditions. So far, Randers metrics of scalar flag curvature are
still unknown. Kropina metrics and m-Kropina metrics have been recently received more attention (see
[13,15,16]).

Our main result concerns Matsumoto metrics of scalar flag curvature.

Theorem 1.1. Let F = % be a non-Riemannian Matsumoto metric on an n-dimensional manifold M,
n = 3. Then F is of scalar flag curvature if and only if F' is projectively flat, i.e., « is locally projectively
flat and B is parallel with respect to .

Li obtains that an n (>3)-dimensional non-Riemannian Matsumoto metric is projectively flat if and only
if a is locally projectively flat and f is parallel with respect to « (see [7]). It is known that « is locally
projectively flat is equivalent to that « is of constant curvature. Hence, a Matsumoto metric, which is
projectively flat (i.e., of scalar flag curvature), must be locally Minkowskian.

The content of this paper is arranged as follows. In Section 2 we introduce essential curvatures of Finsler
metrics, as well as notations and conventions. And we give basic formulas for proofs of theorems in the
following section. In Section 4 the characterization of scalar flag curvature is given under the assumption
that the dual of 3, with respect to «, is a constant Killing vector field. By using it, Theorem 1.1 is proved
in Section 5.

2. Preliminaries

In this section, we give a brief description of several geometric quantities in Finsler geometry. See [4] in
detail.

Let F be a Finsler metric on an n-dimensional smooth manifold M and (z,y) = (z¢,y") the local
coordinates on the tangent bundle T'M. The geodesics of F' are locally characterized by a system of second
order ordinary differential equations

d*x’ ; dx(t)
Y, Yo =
2 T G <x(t), o ) 0,

where
G'= Zgw{[FQjImkyjyk - I:FQ]EJ}

G' are called spray coefficients of F.

The Riemann curvature R (in local coordinates R, a‘; ® dx*) of F is defined by
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It is known that F is of scalar flag curvature if and only if, in a local coordinate system,
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