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Metrics on shape spaces are used to describe deformations that take one shape to
another, and to define a distance between shapes. We study a family of metrics
on the space of curves, which includes several recently proposed metrics, for which
the metrics are characterised by mappings into vector spaces where geodesics can
be easily computed. This family consists of Sobolev-type Riemannian metrics of
order one on the space Imm(S1,R2) of parameterized plane curves and the quotient
space Imm(S1,R2)/Diff(S1) of unparameterized curves. For the space of open
parameterized curves we find an explicit formula for the geodesic distance and
show that the sectional curvatures vanish on the space of parameterized open
curves and are non-negative on the space of unparameterized open curves. For
one particular metric we provide a numerical algorithm that computes geodesics
between unparameterized, closed curves, making use of a constrained formulation
that is implemented numerically using the RATTLE algorithm. We illustrate the
algorithm with some numerical tests between shapes.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The mathematical analysis of shape has been the focus of intense research interest in recent years, not
least because of applications in image analysis and computer vision, where methods based on geodesic active
contours or ‘snakes’ are used for segmentation, tracking and object recognition [31,32]. Another source of
applications is biomedical image analysis, where the study and comparison of shapes form a large part of
the field of computational anatomy [12,13].
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A key problem in shape analysis is to define a distance function between shapes that can measure
similarity in a computationally feasible way and act as the basis for object classification. One way to arrive
at such a distance function is to equip the space of shapes with a Riemannian metric, which allows the
lengths of paths between shapes to be measured. The distance between two shapes can then be defined as
the length of the shortest path connecting them.

For the purposes of this paper we consider shapes to be smooth plane curves (open or closed) modulo
smooth reparameterizations. A slightly narrower definition would be to define a shape as the outline of
a smooth, simply connected domain in the plane; this definition excludes objects like the figure of eight,
which we allow in our definition. Mathematically, a shape is represented by a smooth curve c : S1 → R

2.
To curves c, d represent the same shape if there exists a reparameterization map ϕ ∈ Diff(S1) (that is, the
group of smooth, orientation preserving, invertible maps ϕ : S1 → S1 from the circle onto itself) such that
one curve is a reparameterization of the other, i.e., c = d ◦ ϕ.

We will work with the class of regular or immersed curves c. A curve c is regular if it has a non-vanishing
tangent, i.e., c′(θ) �= 0. The diffeomorphism group Diff(S1) acts on the space of immersed curves

Imm
(
S1,R2) :=

{
c ∈ C∞(

S1,R2) ∣∣ c′(θ) �= 0
}
,

from the right via (ϕ, c) �→ c ◦ ϕ. Using this setting we can identify a shape with an equivalence class [c],
that is an element of the quotient space Imm(S1,R2)/Diff(S1). This quotient is the shape space of im-
mersed closed curves modulo reparameterizations and will be denoted by S. Similarly, one defines the space
Imm([0, 2π],R2) of parameterized open curves and the space Sopen of open shapes.

To arrive at a distance function on shape space requires two steps. First, we define a Riemannian metric
(i.e., an inner product measuring the length of infinitesimal deformations of a curve) on the space of immersed
curves and compute geodesics on this space. The deformations h, k are represented by vector fields along
the curve c and the inner product, which depends on the curve, is denoted by Gc(h, k). If the metric is
invariant under the action of the reparameterization group Diff(S1), then it induces a Riemannian metric
on shape space S, which in turn gives rise to the geodesic distance function. The second step is to find the
right representatives c, d of the equivalence classes [c] and [d], such that the geodesic distance distImm(c, d)
coincides with distS([c], [d]).

1.1. Shape metrics and related work

The simplest reparameterization invariant metric on Imm(S1,R2) is the L2-metric

Gc(h, k) =
∫
S1

〈h, k〉 ds,

where we integrate over arc-length, ds = |c′(θ)|dθ. However, the geodesic distance induced by this metric
vanishes, i.e., the distance between any two shapes is 0, which renders it unsuitable for shape analysis [23].

One way to overcome this is to add terms involving higher derivatives of h and k to the metric, such as:

Gc(h, k) =
∫
S1

〈h, k〉 + A〈Dsh,Dsk〉 ds,

where Dsh = 1
|c′|h

′ denotes the arc-length derivative of h, and A > 0 is a constant. This leads to the class
of Sobolev-type metrics, which were independently introduced in [9,25,32] and studied further in [4,28].

Another family of metrics, the almost local metrics [5,6,24], prevent the geodesic distance from vanishing
by introducing a weight function in the integral. Examples of weight functions involving the curvature or
length are w(θ) = 1 + Aκ(θ)2 and w(θ) = �(c)−1.
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