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Riemannian cubics are curves that generalise cubic polynomials to arbitrary Riemannian
manifolds, in the same way that geodesics generalise straight lines. Considering that
geodesics can be extended indefinitely in any complete manifold, we ask whether
Riemannian cubics can also be extended indefinitely. We find that there are always
exceptions in Riemannian manifolds with strictly negative sectional curvature. On the
other hand, we show that Riemannian cubics can always be extended in complete locally
symmetric Riemannian manifolds of non-negative curvature.
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1. Introduction

The problem of interpolating a sequence of points in a Riemannian manifold M using a curve has led to the proposal
of Riemannian cubics. Given a smooth map x : [0, T ] → M , and a vector field X defined along x, write DX

dt for the covariant
derivative of X along x. A Riemannian cubic is a critical point of the total squared acceleration

T∫
0

〈
D

dt

dx

dt
,

D

dt

dx

dt

〉
dt, (1)

among those curves with specified values for x(0), x(T ), dx
dt (0), dx

dt (T ). The Euler–Lagrange equation is (see [8])
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where R is the Riemannian curvature tensor. Interpolation curves formed from piecewise Riemannian cubics were inde-
pendently proposed for applications in computer graphics in [2], for statistics in [4] (although the paper’s main concern is
another interpolation method), and for robotic control in [8]. The integral (1) is one of the simplest functionals depending
on second derivatives – we see Riemannian cubics as a prototype for the study of higher order variational problems.

Riemannian cubics are higher order geodesics, in the same relation to geodesics as cubic polynomials are to affine
lines. The mathematics of cubics is known to be much richer than for geodesics, even concerning questions about the
basic properties of these curves. In the present paper, motivated by the large body of work on the long term dynamics of
geodesics (see for example [3,11]), we answer some simple questions about the long term dynamics of Riemannian cubics.
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We are interested in the solutions of (2) for values of t outside of the interval [0, T ] specified in the variational prob-
lem (1). In the rotation group SO(3) equipped with a bi-invariant metric, geodesics are projective lines, while the long term
dynamics of (2) are complicated. (See [6] for the long term dynamics of typical Riemannian cubics in SO(3), or [5,7] for a
special case about which more is known.)

Any compact semisimple Lie group admits a bi-invariant Riemannian metric, and the solutions of (2) can be extended
to the whole real line. This was proven in [6] for SO(3) but the method there applies in the general case of a compact
semisimple Lie group. As we will see in this paper, in any locally symmetric complete Riemannian manifold whose sectional
curvature is everywhere non-negative, the Riemannian cubics can be extended to the real line. Surprisingly, the situation is
completely different for spaces of negative sectional curvature.

In an arbitrary complete Riemannian manifold M with a specified point p, one defines the map expp : T p M → M which

takes the vector A ∈ T p M to x(1), where x is the geodesic with x(0) = p and dx
dt (0) = A. If M is locally symmetric with non-

negative sectional curvature, we can do something similar for Riemannian cubics: for a specified p ∈ M and A ∈ T p M let
expA : T p M ⊕ T p M → T M be the map which takes B , C to dx

dt (1) where x is the cubic with x(0) = p, dx
dt (0) = A, D

dt
dx
dt (0) = B ,

D2

dt2
dx
dt (0) = C . On arbitrary M this map may only be defined on a subset of T p M ⊕ T p M . We will show that if the sectional

curvature is strictly negative, there exist initial conditions for which Eq. (2) does not have solutions for all t ∈ R. Since
cubics stay cubics after the reparametrisation t → αt (where α ∈ R), there exist initial conditions for which the equations
do not have solutions defined even on the interval [0,1].

Write K (σ ) for the sectional curvature in a tangent plane σ of some point in M . We say that M has strictly negative
sectional curvature if there exists some λ > 0 such that for any x ∈ M and any plane σ in Tx M , we have K (σ ) � −λ.

The main results of the paper are as follows: In Section 3 we prove the main theorem that in any manifold of strictly
negative curvature, initial conditions can be chosen for Riemannian cubics whose speed diverges to infinity in finite time;
thus these cubics cannot be extended to R. After that we restrict our attention to locally symmetric spaces. In Section 5 we
give an example: we find initial conditions for a cubic in the hyperbolic plane for which 〈 dx

dt , dx
dt 〉 can be solved exactly; it

diverges in finite time. In Section 6 we prove that in locally symmetric spaces of non-negative sectional curvature, Riemannian
cubics can be extended to R.

For some applications length may be incorporated into the functional. Riemannian cubics in tension are critical points of
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where τ is a positive real constant. The Euler–Lagrange equation is
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Cubics in tension were introduced in [13,14] (where they are called elastic curves). Their behaviour in a Lie group with a bi-
invariant metric, and in particular in SO(3), is studied in [14,9,10]. The results of Sections 3 and 6 apply also to Riemannian
cubics in tension.

2. Preliminary calculations

In this section we make some calculations that will be needed throughout the paper. Recall the following identities of
the Riemannian curvature tensor R . For X , Y , Z , W tangent vectors at a point (see for example [12, Chapter 15]):

R(X, Y )Z = −R(Y , X)Z , (4)〈
R(X, Y )Z , W

〉 = −〈
R(X, Y )W , Z

〉
, (5)〈

R(X, Y )Z , W
〉 = 〈

R(W , Z)Y , X
〉
. (6)

Let p be a point in a Riemannian manifold M and let X, Y ∈ T p M be linearly independent. The sectional curvature in the
plane σ = span{X, Y } is

K (σ ) = 〈R(X, Y )Y , X〉
〈X, X〉〈Y , Y 〉 − 〈X, Y 〉2

(7)

which, because of the symmetries of R , does not depend upon the choice of X and Y spanning σ .
Let τ � 0. (We treat (2) as a special case of (3) with τ = 0.) For any solution x : (t−, t+) → M of (3) and for non-negative

integers i, j define
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Then we have
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