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In this paper, we derive the second variation formulas of volume for minimal immersions
into Finsler manifolds and apply them to study the stability of minimal submanifolds. Then
we prove that all minimal graphs in Minkowski (n + 1)-space are stable. Furthermore,
we obtain a Bernstein type theorem in Minkowski (n + 1)-space by improving Bernstein
type theorems in Euclidean space and give an example of unstable minimal surface in
Minkowski 3-space.
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1. Preliminaries

Theories on harmonic maps and minimal submanifolds have always been important research subjects in global differen-
tial geometry, and many significant results have been obtained in the last few decades. More recently, studies on harmonic
maps and minimal submanifolds in Finsler geometry have also made some progress [1–6]. Using the Holmes–Thompson vol-
ume form, X.H. Mo introduced the notion of harmonic maps from a Finsler manifold to a Riemannian manifold in 2001 [3].
Later, Y.B. Shen and Y. Zhang derived the first and the second variation formulas of energy function for a nondegenerate map
between Finsler manifolds [4]. The stability of harmonic maps was studied in [6]. In 2006, the first author and Y.B. Shen
investigated the minimal immersions in Finsler manifolds, gave the first variation formulas of volumes [5] and proved some
Bernstein type theorems for minimal graphs [9].

It is well known that though a minimal immersion is just an isometric harmonic map, their stabilities are different.
The purpose of this paper is to study the second variation of volume and the stability of minimal submanifolds in Finsler
geometry. In Section 2, we review some related definitions and formulas. In Section 3, we derive the second variation
formulas of minimal immersions into Finsler manifolds (Theorem 1). As its application, we consider the stability of minimal
immersions into Minkowski (n + 1)-spaces. In Section 4, by simplifying the second variation formula, we give a necessary
and sufficient condition for a minimal hypersurface in Minkowski (n + 1)-space to be stable (Proposition 4.1) and prove that
all minimal graphs in Minkowski space are stable (Theorem 2). In the last section, we obtain a Bernstein type theorem in
Minkowski space (Theorem 4) by improving some Bernstein type theorems in Euclidean space (Theorem 3). Moreover, we
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show that a helicoidal surface is minimal not only in Euclidean 3-space but also in (α,β)-Minkowski space (Ṽ 3, α̃φ(
β̃

α̃
))

(Example 1). By these facts, we give an example of unstable minimal surface in (α,β)-Minkowski spaces (Example 2).

2. Volume forms and minimal immersions

Let (M, F ) be an n-dimensional smooth Finsler manifold. The natural projection π : T M → M gives rise to the pull-back
bundle π∗T M and its dual π∗T ∗M . Let (x, y) be a point of T M with x ∈ M , y ∈ Tx M , and (xi, yi) be the local coordinates
on T M with y = yi∂/∂xi . We shall work on T M \ {0} and rigidly use only objects that are invariant under positive rescaling
in y, so that one may view them as objects on the projective sphere bundle SM using homogeneous coordinates. The
following quantities

gij := 1

2

[
F 2]

yi y j , Aijk = F

2

[
1

2
F 2

]
yi y j yk

, ηi = g jk Aijk, (2.1)

are called the fundamental tensor, the Cartan tensor and the Cartan form respectively. Here and from now on, [F ]yi , [F ]yi y j

mean ∂ F
∂ yi , ∂2 F

∂ yi∂ y j , etc., and we shall use the following convention of index ranges unless otherwise stated:

1 � i, j, . . . � n; n + 1 � a,b, . . . � 2n − 1; 1 � α,β, . . . � m(> n).

The simplest Finsler manifolds are Minkowski spaces, on which the metric function F is independent of x.
In π∗T ∗M there is a global section ω = [F ]yi dxi , called the Hilbert form, whose dual is l = li ∂

∂xi , li = yi/F , called the

distinguished field. Each fibre of π∗T ∗M has a positively oriented orthonormal coframe {ωi} with ωn = ω. Expand ωi as
vi

jdx j , whereby the stipulated orientation implies that det(vi
j) = √

det(gij). Set

ωn+i = vi
jδy j, δyi = 1

F

(
dyi + Ni

j dx j), δ

δx j
= ∂

∂x j
− Nk

j
∂

∂ yk
. (2.2)

The collection {ωi,ωn+i} forms an orthonormal basis on T ∗(T M \ {0}) with respect to the Sasaki-type metric gij dxi ⊗ dx j +
gijδyi ⊗ δy j . The pull-back of the Sasaki-type metric from T M \ {0} to SM is a Riemannian metric

ĝ = gij dxi ⊗ dx j + δabω
a ⊗ ωb. (2.3)

Thus, the volume element dV S M of SM with the metric ĝ is given by

dV S M = ω1 ∧ · · · ∧ ω2n−1 = Ω dτ ∧ dx, (2.4)

where

Ω := det

(
gij

F

)
, dx = dx1 ∧ · · · ∧ dxn, (2.5)

dτ :=
n∑

i=1

(−1)i−1 yidy1 ∧ · · · ∧ d̂yi ∧ · · · ∧ dyn. (2.6)

The volume form of a Finsler n-manifold (M, F ) is defined by

dV M := σ(x)dx, σ (x) := 1

cn−1

∫
Sx M

Ω dτ , (2.7)

where cn−1 denotes the volume of the unit Euclidean (n − 1)-sphere Sn−1, SxM = {[y] | y ∈ Tx M}. It is well known that
there exists uniquely the Chern connection ∇ on π∗T M with ∇ ∂

∂x j = ωi
j

∂

∂xi and ωi
j = Γ i

jk dxk , satisfying

d
(
dxi) − dx j ∧ ωi

j = 0,

dgij − gikω
k
j − g jkω

k
i = 2Aijkδyk. (2.8)

The curvature 2-forms of the Chern connection ∇ are

dωi
j − ωk

j ∧ ωi
k = Ω i

j := 1

2
R j

i
kl dxk ∧ dxl + P j

i
kl dxk ∧ δyl, (2.9)

where R j
i
kl = −R j

i
lk and P j

i
kl = Pk

i
jl are called the hh-curvature and the hv-curvature respectively. The Riemannian curvature

tensor and the Landsberg curvature tensor are defined by

Ri
j := Rs

i
jklslk, Li

jk := −ls P s
i

jk, (2.10)



Download English Version:

https://daneshyari.com/en/article/4606208

Download Persian Version:

https://daneshyari.com/article/4606208

Daneshyari.com

https://daneshyari.com/en/article/4606208
https://daneshyari.com/article/4606208
https://daneshyari.com

