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We show how the Dixon’s system of first order equations of motion for the particle
with inner dipole structure together with the side Mathisson constraint follows from
rather general construction of the ‘Hamilton system’ developed by Weyssenhoff, Rund
and Grässer to describe the phase space counterpart of the evolution under the ordinary
Euler–Poisson differential equation of the parameter-invariant variational problem with
second derivatives. One concrete expression of the ‘Hamilton function’ leads to the
General Relativistic form of the fourth order equation of motion known to describe the
quasi-classical ‘quiver’ particle in Special Relativity. The corresponding Lagrange function
including velocity and acceleration coincides in the flat space of Special Relativity with the
one considered by Bopp in an attempt to give an approximate variational formulation of
the motion of self-radiating electron, when expressed in terms of geometric quantities.
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1. Introduction

Consider a quite popular and fairly general Dixon [1] system of first order ordinary differential equations1⎧⎨⎩ P ′
α = −1

2
Rαβ

ρν ẋβ Sρν,

S ′
αβ = Pα ẋβ − Pβ ẋα,

Sαβ + Sβα = 0, (1)

written in terms of the covariant derivatives, denoted from here on by prime.
In the theory of General Relativity such equations should hold along the world line of a quasi-classical particle endowed

with the inner angular momentum (said ‘spin’) Sαβ , responsible for its dipole structure.
Among several additional side conditions needed to make system (1) solvable (see [2]), we choose to focus on the one

preferred by Mathisson [3]

ẋρ Sρα = 0. (2)

Now imagine that someone wishes to construct a sort of ‘Hamilton’ picture of the system (1) under the imposed con-
straint (2). There exists a non-conventional approach to do this along the following guidelines. First, try to eliminate the
variables Sαβ by means of taking subsequent differential prolongations of (1), (2). Further, try to find a variational problem
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1 Our definition of the curvature tensor differs in sign from the one adopted in papers [1,2].
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with higher derivatives for thus obtained equations, perhaps, under different constraints. Then pass to the corresponding
Hamilton–Ostrohrads’kyj counterpart in terms of the generalized momenta. As the last step, compose some geometric quan-
tities Sαβ from the canonical variables: the momenta and the velocities. If successful, one regains the system (1), with the
constraint (2) already satisfied identically.

We show to the end of this paper that (1) follows from a fairly general setting of the second order parameter-invariant variational
problem as its ‘Hamiltonian’ counterpart by the appropriate definition of Sαβ .

In flat space–time of Special Relativity the differential elimination of the variable Sαβ from (1), (2) leads to the fourth
order equation of motion

....
x +

(
k2 − m2

σ 2

)
ẍ = 0, (ẋ · ẋ) = 1, (3)

where k2 = (ẍ · ẍ) is the first integral of (3), and

σα = 1

2‖u‖εαβρνuβ Sρν. (4)

Eq. (3) was shown by Riewe [4] and Costantelos [5] to describe ‘Zitterbewegung’ (quiver) of a quasi-classical particle.
We show to the end of this paper that (3) occurs as the natural parameterization of an Euler–Poisson (said variational) equation

constrained to the manifold k = k0, of some parameter-invariant variational problem of the second order.
The above program for the flat space–time was carried out in two preceding papers [6,7].2

In present paper rather that go all way round the procedure mentioned above, we merely offer a straightforward gener-
alization of the ‘Hamiltonian’ depiction obtained in [7] to the case of (pseudo)Riemannian geometry.

2. The Grässer–Rund–Weyssenhoff canonical equations

In the space of the fourth order Ehresmann velocities T 4M let us stick to the commonly recognized coordinates x =
{xα} ∈ M , u = ẋ = dx

dτ (0), u̇ = d2x
dτ 2 (0), ü = d3x

dτ 3 (0),
...
u = d4x

dτ 4 (0). A function L(x, u, u̇) defined on T 2 M , constitutes a parameter-
invariant variational problem δ

∫
L dτ = 0 if and only if it satisfies the now well-known Zermelo conditions:

uα ∂L
∂ u̇α

≡ 0, (5.1)

uα ∂L
∂uα

+ 2u̇α ∂L
∂ u̇α

− L ≡ 0. (5.2)

We also recall the definition of the Legendre transformation, that is the mapping Le : T 3M → T ∗(TM) over TM given by

℘(1) = ∂L
∂ u̇

, (6.1)

℘ = ∂L
∂u

− Dτ ℘(1), (6.2)

where

Dτ = u
∂

∂x
+ u̇

∂

∂u
+ ü

∂

∂ u̇

denotes the operator of total derivative, and the canonical coordinates in T ∗(TM) are denoted by x, u, p, p(1) . Applying Dτ

to (5.1) immediately gives that in terms of the mixed set of variables {u̇, p, p(1)} the Zermelo conditions look like

Z1
def= uα℘(1)

α = 0, (7.1)

Z2
def= uα℘α + u̇α℘(1)

α − L = 0. (7.2)

The standard Liouville form Λ on T ∗(TM) reads

Λ = p.dx + p(1).du.

The system of the canonical equations developed in the paper of Grässer [8], who took as a basis the works of Rund [9]
and Weyssenhoff [10], follow from the exterior differential equation

Le−1i X dΛ = −λLe−1 dH − μLe−1 dZ1. (8)

2 A technical mistake that slipped in the expression for the Hamilton function in paper [6] has been corrected in paper [7].
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