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The purpose of this paper is to present a new proof of Branson’s classification (Branson,
1997 [3]), of minimal elliptic sums of generalized gradients. The advantage of this proof
is that it is local, being mainly based on representation theory and on the relationship
between ellipticity and refined Kato inequalities. This approach is promising for the
classification of elliptic generalized gradients of G-structures, for other subgroups G of the
special orthogonal group.
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1. Introduction

Generalized gradients, also called Stein–Weiss operators, were first introduced by E. Stein and G. Weiss, [16], as a gener-
alization of the Cauchy–Riemann equations. They are first order differential operators acting on sections of vector bundles
associated to irreducible representations of the special orthogonal group (or of the spin group if the manifold is spin), which
are given by the projections of a metric covariant derivative onto irreducible subbundles.

On an oriented Riemannian manifold, generalized gradients naturally give rise, by composition with their formal adjoints,
to second order differential operators acting on sections of associated vector bundles. Particularly important are linear
combinations of such second order operators which are elliptic. These were classified by Th. Branson, [3], who showed
that it is enough to take surprisingly few generalized gradients in order to obtain an elliptic operator. It thus turned out
that Laplace-type operators represent the generic case. The argument of Th. Branson relies on tools and techniques of
harmonic analysis and explicit computations of the spectra of generalized gradients on the sphere. Partial results regarding
the ellipticity of natural first order operators were previously obtained by J. Kalina, A. Pierzchalski and P. Walczak, [10], who
showed that the only generalized gradient which is strongly elliptic is given by the projection onto the Cartan summand.
Furthermore, the projection onto its complement is also elliptic, by a result of E. Stein and G. Weiss, [16].

In this paper we present a local proof of Branson’s classification, up to one exceptional case. We shall only sketch the
main ideas, which are developed in [14] and will appear elsewhere. Our method is completely different from the original
one in [3], which seems to be specific for the two structure groups SO(n) or Spin(n). The starting point is the remark
that these elliptic operators are closely related to the existence of refined Kato inequalities, which was first noticed by
Bourguignon, [1]. In the first part of our proof we extend to all generalized gradients the explicit computation of the
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optimal Kato constants for the elliptic ones, which was given by Calderbank, Gauduchon and Herzlich, [7]. We notice that
a different approach to establishing a general formula for the optimal Kato constants has been given by Branson, [5]. In
the second part of the proof we show that these are all minimal elliptic operators, using the branching rule for the special
orthogonal group.

2. Branson’s classification of elliptic generalized gradients

In this section we recall Branson’s classification of elliptic generalized gradients, cf. [3].
Let (M, g) be an oriented Riemannian manifold, SOg M denotes the principal SO(n)-bundle of oriented orthonormal

frames and ∇ any metric connection. If M has, in addition, a spin structure, then we consider the corresponding principal
Spin(n)-bundle, Sping M , and the induced metric connection ∇ . We consider vector bundles VλM , associated to SOg M (or
Sping M) and irreducible SO(n)- (or Spin(n))-representations of highest weight λ, with the induced connection ∇ .

With a slight abuse of notation, we use the same symbol for an irreducible representation and its highest weight. We
denote by τ the (complex) standard representation and the coordinates (λ1, . . . , λm) of a weight λ are given with respect
to the basis {ε1, . . . , εm} of h∗ , which is the dual of the basis {e1 ∧ e2, . . . , e2m−1 ∧ e2m} that fixes a Cartan subalgebra h of
so(n), where n = 2m or n = 2m + 1 and {e1, . . . , en} is an oriented orthonormal basis of R

n . The so-called classical selection
rule (see [8]) holds: an irreducible representation of highest weight μ occurs in the decomposition of τ ⊗ λ if and only if
the following two conditions are fulfilled

(i) μ = λ ± ε j , for some j = 1, . . . ,m, or n = 2m + 1, λm > 0 and μ = λ,
(ii) μ is a dominant weight, i.e. μ = (μ1, . . . ,μm) ∈ Z

m ∪ ( 1
2 + Z)m and

μ1 � μ2 � · · · � μm−1 � |μm|, if n = 2m, or μ1 � μ2 � · · · � μm � 0, if n = 2m + 1. (2.1)

We write ε ⊂ λ for the weights ε of τ such that λ + ε occurs in the decomposition of τ ⊗ λ and call them relevant for λ.
This decomposition is multiplicity-free, i.e. the isotypical components are actually irreducible, so that the projections Πε

onto each irreducible summand λ + ε are well-defined. The decomposition carries over to the associated vector bundles:

T∗M ⊗ VλM ∼= TM ⊗ VλM ∼=
⊕
ε⊂λ

Vλ+εM, (2.2)

where the corresponding projections are also denoted by Πε .

Definition 2.1. For each relevant weight ε of λ, i.e. for each irreducible component in the decomposition of T∗M ⊗ VλM ,
there is a generalized gradient Pε defined by the composition:

Γ (VλM)
∇−→ Γ

(
T∗M ⊗ VλM

) Πε−−→ Γ (Vλ+εM). (2.3)

Generalized gradients may be thus defined by any metric connection. Those defined by the Levi-Civita connection play
an important role since they are conformal invariant [13]. Some of the most important first order differential operators
which naturally appear in geometry are, up to normalization, particular cases of generalized gradients. For example, on
a Riemannian manifold, the exterior differential acting on differential forms, its formal adjoint, the codifferential, and the
conformal Killing operator on 1-forms are generalized gradients. On a spin manifold, classical examples of generalized
gradients are the Dirac operator, the twistor (or Penrose) operator and the Rarita–Schwinger operator.

Remark 2.2. Essentially the same construction as above may be used to define generalized gradients associated to a G-
structure. For a study of these G-generalized gradients, where G is one of the subgroups of SO(n) from Berger’s list of
holonomy groups, we refer the reader e.g. to [12].

Since the principal symbol of a generalized gradient Pε is given by the projection Πε defining it, it follows that Pε is
overdetermined (or injectively) elliptic (in the sequel we shall shortly say elliptic) if and only if the map Πε ◦ (ξ ⊗ ·) : Vλ →
Vλ+ε is injective, for each nonzero section ξ ∈ Γ (T∗

x M). Thus, the generalized gradient Pε is (strongly) injectively elliptic if
and only if Πε is not vanishing on each nonzero decomposable element.

For any subset I of the set of relevant weights of λ, we consider the following second order differential operator:∑
ε∈I P∗

ε Pε , where Pε := Πε ◦ ∇ is the generalized gradient. In [3], Branson completely classified the operators of this type
which are elliptic.

The problem may be reduced to first order differential operators as follows: if P I := ∑
ε∈I Pε , then

∑
ε∈I P∗

ε Pε is elliptic
if and only if P I is elliptic, i.e. the projection ΠI := ∑

ε∈I Πε : T ⊗ Vλ → ⊕
ε∈I Vλ+ε is injective when restricted to the set of

decomposable elements in T ⊗ Vλ . Thus, the study of the ellipticity is reduced to a question on the representation theory
of so(n), without reference to any particular manifold.
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