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Hamilton equations based upon a general Lepagean equivalent of the Yang–Mills Lagrangian
are investigated. A regularization of the Yang–Mills Lagrangian which is singular with
respect to the standard regularity conditions is derived.
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1. Introduction

The aim of this paper is to study a Hamiltonian structure of the Yang–Mills theory. Many authors have worked on a
geometric formulation of Hamiltonian theory (cf. [2,3,8,9] and references therein). The approach of the calculus of variations
on fibered manifolds which is based on Krupková’s concept of a Lepagean (n + 1)-form generalizing Krupka’s concept of
a Lepagean n-form is adopted (n is the dimension of the base manifold of the fibered manifold). This approach opens a
possibility to regularize a Lagrangian whose standard Hessian is singular, it is the case of the Yang–Mills Lagrangian too.

This informative paper is organized as follows. In Section 2, a survey of the general variational theory [1,5,6] is given
and the results involving a Hamiltonian field theory [10,11] needed in the Yang–Mills theory are summarized. In Section 3,
a Hamiltonian system associated with the Yang–Mills theory is presented and Legendre transformation after the regulariza-
tion is performed.

2. Lagrangian and Hamiltonian theory on fibered manifolds

Recall our standard notation [5–9]. We have a fibered manifold π : Y → X , and write n = dim X , n + m = dim Y . J r Y is
the r-jet prolongation of Y , and π r,s : J r Y → J sY , π r : J r Y → X are the canonical jet projections. The r-jet prolongation of a
section γ is defined to be the mapping x → J rγ (x) = J r

xγ . For any set W ⊂ Y we denote W r = (π r,0)−1(W ). Any fibered
chart (V ,ψ), ψ = (xi, yσ ), on Y induces the associated charts on X and J r Y , denoted by (U ,ϕ), ϕ = (xi), and (V r,ψr),
ψr = (xi, yσ , yσ

j1
, yσ

j1 j2
, . . . , yσ

j1 j2... jr
), respectively; here 1 � i, j1, . . . , jr � n, 1 � σ � m, and V r = (π r,0)−1(V ), U = π r(V ).
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We denote ω0 = dx1 ∧ dx2 ∧ · · · ∧ dxn , and its contractions ωi = i∂/∂xi ω0, ωi j = i∂/∂x j ωi . We define the formal derivative

operator with respect to xi by di = ∂/∂xi + yσ
i (∂/∂ yσ ) + yσ

j1 i(∂/∂ yσ
j1
) + · · · + yσ

j1 j2... jr i(∂/∂ yσ
j1 j2... jr

).
For any open set W ⊂ Y , let Ωr

0W be the ring of functions on W r . The Ωr
0W -module of differential q-forms on W r is

denoted by Ωr
q W , and the exterior algebra of forms on W r is denoted by Ωr W . The module of π r -horizontal q-forms is

denoted by Ωr
q,X W . A form ρ ∈ Ωr

q W is called π r,s-projectable if there exists a form ρ0 ∈ Ω s
q W such that π r,s∗ρ0 = ρ . The

fibered structure of Y induces a morphism of exterior algebras h : Ωr W → Ωr+1W , called the horizontalization. In a fibered
chart h is defined by hf = f ◦π r+1,r , h dxi = dxi , h dyσ

j1 j2... jp
= yσ

j1 j2... jp i dxi , where f is a real function on W r , and 0 � p � r.

We say that a form η ∈ Ωr
q W is contact, if hη = 0. For any fibered chart the 1-forms ησ

j1 j2... jp
= dyσ

j1 j2... jp
− yσ

j1 j2... jp i dxi ,

where 1 � p � r − 1, are examples of contact 1-forms, defined on V r . Note that these forms define a basis of 1-forms on V r ,
(dxi, ησ

j1 j2... jp
,dyσ

j1 j2... jr
). For every η ∈ Ωr

q W we have a unique canonical decomposition π r+1,r∗η = hη + p1η + · · · + pqη

into a sum of a horizontal form hη and k-contact forms pkη, 1 � k � q; in coordinates each term of a k-contact form with
respect to a basis (dxi, ησ

j1 j2... jp
,dyσ

j1 j2... jr+1
), 1 � p � r, contains exactly k of the 1-contact 1-forms ησ

j1 j2... jp
.

A Lagrangian for Y is a π r -horizontal n-form λ on the r-jet prolongation J r Y of Y . The number r is called the order of λ.
In a fibered chart (V ,ψ) on Y , and the associated chart on J r Y , a Lagrangian of order r has an expression λ = Lω0, where
L : V r → R is the component of λ with respect to (V ,ψ) (the Lagrange function associated with (V ,ψ)). The Euler–Lagrange
form of λ is defined to be an (n + 1)-form Eλ on J 2r Y , defined by

Eλ = Eσ (L)ησ ∧ ω0, Eσ (L) =
r∑

l=0

(−1)ld j1d j2 . . .d jl
∂L

∂ yσ
j1 j2... jl

,

Eσ (L) are the Euler–Lagrange expressions.
An n-form ρ on J sY is called a Lepagean n-form (of order s) if the (n + 1)-form p1 dρ is π s+1,0-horizontal. If hρ = λ

then we say that ρ is a Lepagean equivalent of the Lagrangian λ. An (n + 1)-form E on J sY , s � 1, is called a dynamical form
if it is 1-contact and π s,0-horizontal, i.e. in any fibered chart E = Eσ ησ ∧ ω0, where Eσ are functions on an open set in
J sY . A closed (n + 1)-form α on J sY , s � 0, is called a Lepagean (n + 1)-form if p1α is a dynamical form. If α is a Lepagean
(n + 1)-form and p1α = E then we say that α is a Lepagean equivalent of E .

We say that Lepagean (n + 1)-forms α1 and α2 are equivalent if (up to a projection) p1α1 = p1α2. The equivalence
class [α] of all Lepagean (n + 1)-forms is called a Lagrangian system. Let s � 0 denote the dynamical order of the Lagrangian
system [α] defined as the minimum of the set of orders of the forms from [α], then a section γ : U → Y defined on an
open subset U ⊂ X is an extremal of E = p1α, i.e. E ◦ J s+1γ = 0, iff for every π -vertical vector field ξ on Y ,

J sγ ∗i J sξα = 0, (1)

where α is any representative of order s of [α]. Eqs. (1) are called Euler–Lagrange equations corresponding to the Lagrangian
system [α].

A Hamiltonian system of order s is given by a Lepagean (n + 1)-form α on J sY . A section δ of the fibered manifold π s is
called a Hamilton extremal of α if

δ∗iξα = 0, (2)

for every π s-vertical vector field ξ on J sY . Eqs. (2) are called Hamilton equations of α. If there exists an at most k-contact
Lepagean n-form ρ , 1 � k � n, in a neighborhood of every point in J sY such that α = dρ , we call Eqs. (2) Hamilton pk-
equations.

For a Lagrangian λ = Lω0 ∈ Ω1
n,X W which is singular in the standard sense, i.e. the regularity condition det( ∂2 L

∂ yσ
i ∂ yν

j
) �= 0

at each point of W 1 is not satisfied, we can consider its simple regularization ρ ∈ Ω1
n W , defined as a Lepagean equivalent

of λ, such that ρ is at most 2-contact, p2ρ = p2β for a π1,0-projectable form β ∈ Ω1
n W , i.e. using a fibered chart

ρ = Lω0 + ∂L
∂ yσ

i

ησ ∧ ωi + gij
σνη

σ ∧ ην ∧ ωi j, (3)

where gij
σν = −g ji

σν = −gij
νσ are functions on W and ρ satisfies the following regularity condition on W 1

det

(
∂2 L

∂ yσ
i ∂ yν

j

− 4gij
σν

)
�= 0,

where (σ , i) labels rows and (ν, j) labels columns. The next statements were proved in [10,11].

Theorem 2.1. Let ρ be the regularization of λ as above (3) and α = dρ .
(1) Then every Hamilton extremal δ of α = dρ is of the form δ = J 1γ , where γ is an extremal of Eλ = p1 dρ .
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