

Contents lists available at ScienceDirect

Differential Geometry and its Applications

Hamiltonian structure of the Yang-Mills functional

A. Paták

Institute of Mathematics, Faculty of Economics and Administration, University of Pardubice, Studentská 84, 53210 Pardubice, Czech Republic

ARTICLE INFO

Article history: Available online 22 April 2011 Communicated by D. Krupka

MSC: 58Z05 70S05 70S15

Keywords: Lagrangian Lepagean form Hamilton equations Legendre transformation Yang-Mills field Jet prolongation

1. Introduction

The aim of this paper is to study a Hamiltonian structure of the Yang–Mills theory. Many authors have worked on a geometric formulation of Hamiltonian theory (cf. [2,3,8,9] and references therein). The approach of the calculus of variations on fibered manifolds which is based on Krupková's concept of a Lepagean (n + 1)-form generalizing Krupka's concept of a Lepagean *n*-form is adopted (*n* is the dimension of the base manifold of the fibered manifold). This approach opens a possibility to regularize a Lagrangian whose standard Hessian is singular, it is the case of the Yang–Mills Lagrangian too.

This informative paper is organized as follows. In Section 2, a survey of the general variational theory [1,5,6] is given and the results involving a Hamiltonian field theory [10,11] needed in the Yang–Mills theory are summarized. In Section 3, a Hamiltonian system associated with the Yang–Mills theory is presented and Legendre transformation after the regularization is performed.

2. Lagrangian and Hamiltonian theory on fibered manifolds

Recall our standard notation [5–9]. We have a fibered manifold $\pi : Y \to X$, and write $n = \dim X$, $n + m = \dim Y$. $J^r Y$ is the *r*-jet prolongation of Y, and $\pi^{r,s} : J^r Y \to J^s Y$, $\pi^r : J^r Y \to X$ are the canonical jet projections. The *r*-jet prolongation of a section γ is defined to be the mapping $x \to J^r \gamma(x) = J_x^r \gamma$. For any set $W \subset Y$ we denote $W^r = (\pi^{r,0})^{-1}(W)$. Any fibered chart $(V, \psi), \psi = (x^i, y^{\sigma}), \text{ on } Y$ induces the associated charts on X and $J^r Y$, denoted by $(U, \varphi), \varphi = (x^i)$, and $(V^r, \psi^r), \psi^r = (x^i, y^{\sigma}, y^{\sigma}_{j_1}, y^{\sigma}_{j_1 j_2}, \dots, y^{\sigma}_{j_1 j_2 \dots j_r})$, respectively; here $1 \leq i, j_1, \dots, j_r \leq n, 1 \leq \sigma \leq m$, and $V^r = (\pi^{r,0})^{-1}(V), U = \pi^r(V)$.

E-mail address: patak@physics.muni.cz.

ABSTRACT

Hamilton equations based upon a general Lepagean equivalent of the Yang–Mills Lagrangian are investigated. A regularization of the Yang–Mills Lagrangian which is singular with respect to the standard regularity conditions is derived.

© 2011 Elsevier B.V. All rights reserved.

URL: http://www.upce.cz.

 $^{0926\}text{-}2245/\$$ – see front matter $\ \textcircled{C}$ 2011 Elsevier B.V. All rights reserved. doi:10.1016/j.difgeo.2011.04.049

We denote $\omega_0 = dx^1 \wedge dx^2 \wedge \cdots \wedge dx^n$, and its contractions $\omega_i = i_{\partial/\partial x^i} \omega_0$, $\omega_{ij} = i_{\partial/\partial x^j} \omega_i$. We define the *formal derivative*

operator with respect to x^i by $d_i = \partial/\partial x^i + y_i^{\sigma} (\partial/\partial y^{\sigma}) + y_{j_1 i}^{\sigma} (\partial/\partial y_{j_1}^{\sigma}) + \dots + y_{j_1 j_2 \dots j_r i}^{\sigma} (\partial/\partial y_{j_1 j_2 \dots j_r}^{\sigma})$. For any open set $W \subset Y$, let $\Omega_0^r W$ be the ring of functions on W^r . The $\Omega_0^r W$ -module of differential *q*-forms on W^r is denoted by $\Omega_q^r W$, and the exterior algebra of forms on W^r is denoted by $\Omega_{q,X}^r W$. The module of π^r -horizontal *q*-forms is denoted by $\Omega_{q,X}^r W$. A form $\rho \in \Omega_q^r W$ is called $\pi^{r,s}$ -projectable if there exists a form $\rho_0 \in \Omega_q^s W$ such that $\pi^{r,s*} \rho_0 = \rho$. The

fibered structure of Y induces a morphism of exterior algebras $h: \Omega^r W \to \Omega^{r+1} W$, called the *horizontalization*. In a fibered chart h is defined by $hf = f \circ \pi^{r+1,r}$, $hdx^i = dx^i$, $hdy^{\sigma}_{j_1j_2...j_p} = y^{\sigma}_{j_1j_2...j_pi} dx^i$, where f is a real function on W^r , and $0 \le p \le r$. We say that a form $\eta \in \Omega^r_q W$ is contact, if $h\eta = 0$. For any fibered chart the 1-forms $\eta^{\sigma}_{j_1j_2...j_p} = dy^{\sigma}_{j_1j_2...j_p} - y^{\sigma}_{j_1j_2...j_pi} dx^i$, where $1 \le p \le r-1$, are examples of contact 1-forms, defined on V^r . Note that these forms define a basis of 1-forms on V^r , $(dx^i, \eta^{\sigma}_{j_1j_2...j_p}, dy^{\sigma}_{j_1j_2...j_p})$. For every $\eta \in \Omega^r_q W$ we have a unique canonical decomposition $\pi^{r+1,r*}\eta = h\eta + p_1\eta + \cdots + p_q\eta$ into a sum of a horizontal form hn and k-contact forms $n = 1 \le k \le m$ is coordicated each ture of r. into a sum of a horizontal form $h\eta$ and k-contact forms $p_k\eta$, $1 \le k \le q$; in coordinates each term of a k-contact form with respect to a basis $(dx^i, \eta^{\sigma}_{j_1j_2...j_p}, dy^{\sigma}_{j_1j_2...j_p})$, $1 \le p \le r$, contains exactly k of the 1-contact 1-forms $\eta^{\sigma}_{j_1j_2...j_p}$.

A Lagrangian for Y is a π^r -horizontal *n*-form λ on the *r*-jet prolongation $J^r Y$ of Y. The number *r* is called the *order* of λ . In a fibered chart (V, ψ) on Y, and the associated chart on $J^r Y$, a Lagrangian of order r has an expression $\lambda = \mathcal{L}\omega_0$, where $\mathcal{L}: V^r \to \mathbb{R}$ is the component of λ with respect to (V, ψ) (the Lagrange function associated with (V, ψ)). The Euler-Lagrange form of λ is defined to be an (n + 1)-form E_{λ} on $I^{2r}Y$, defined by

$$E_{\lambda} = E_{\sigma}(\mathcal{L})\eta^{\sigma} \wedge \omega_{0}, \quad E_{\sigma}(\mathcal{L}) = \sum_{l=0}^{r} (-1)^{l} d_{j_{1}} d_{j_{2}} \dots d_{j_{l}} \frac{\partial \mathcal{L}}{\partial y_{j_{1} j_{2} \dots j_{l}}^{\sigma}},$$

 $E_{\sigma}(\mathcal{L})$ are the Euler–Lagrange expressions.

An *n*-form ρ on $J^{s}Y$ is called a *Lepagean n*-form (of order s) if the (n + 1)-form $p_1 d\rho$ is $\pi^{s+1,0}$ -horizontal. If $h\rho = \lambda$ then we say that ρ is a *Lepagean equivalent* of the Lagrangian λ . An (n + 1)-form E on $J^{s}Y$, $s \ge 1$, is called a *dynamical form* if it is 1-contact and $\pi^{s,0}$ -horizontal, i.e. in any fibered chart $E = E_{\sigma} \eta^{\sigma} \wedge \omega_0$, where E_{σ} are functions on an open set in $I^{s}Y$. A closed (n + 1)-form α on $I^{s}Y$, $s \ge 0$, is called a Lepagean (n + 1)-form if $p_{1}\alpha$ is a dynamical form. If α is a Lepagean (n + 1)-form and $p_1 \alpha = E$ then we say that α is a Lepagean equivalent of E.

We say that Lepagean (n + 1)-forms α_1 and α_2 are *equivalent* if (up to a projection) $p_1\alpha_1 = p_1\alpha_2$. The equivalence class [α] of all Lepagean (n + 1)-forms is called a Lagrangian system. Let $s \ge 0$ denote the dynamical order of the Lagrangian system $[\alpha]$ defined as the minimum of the set of orders of the forms from $[\alpha]$, then a section $\gamma: U \to Y$ defined on an open subset $U \subset X$ is an extremal of $E = p_1 \alpha$, i.e. $E \circ I^{s+1} \gamma = 0$, iff for every π -vertical vector field ξ on Y,

$$J^{s}\gamma^{*}i_{J^{s}\xi}\alpha=0,$$
(1)

where α is any representative of order s of $[\alpha]$. Eqs. (1) are called *Euler–Lagrange equations* corresponding to the Lagrangian system $[\alpha]$.

A Hamiltonian system of order s is given by a Lepagean (n + 1)-form α on $J^{s}Y$. A section δ of the fibered manifold π^{s} is called a Hamilton extremal of α if

$$\delta^* i_{\xi} \alpha = 0, \tag{2}$$

for every π^s -vertical vector field ξ on J^sY . Eqs. (2) are called Hamilton equations of α . If there exists an at most k-contact Lepagean *n*-form ρ , $1 \le k \le n$, in a neighborhood of every point in $J^{s}Y$ such that $\alpha = d\rho$, we call Eqs. (2) Hamilton p_{k} equations.

For a Lagrangian $\lambda = \mathcal{L}\omega_0 \in \Omega^1_{n,X}W$ which is singular in the standard sense, i.e. the regularity condition $\det(\frac{\partial^2 \mathcal{L}}{\partial y_0^{\sigma} \partial y_1^{\psi}}) \neq 0$ at each point of W^1 is not satisfied, we can consider its simple *regularization* $\rho \in \Omega_n^1 W$, defined as a Lepagean equivalent of λ , such that ρ is at most 2-contact, $p_2\rho = p_2\beta$ for a $\pi^{1,0}$ -projectable form $\beta \in \Omega_n^1 W$, i.e. using a fibered chart

$$\rho = \mathcal{L}\omega_0 + \frac{\partial \mathcal{L}}{\partial y_i^{\sigma}} \eta^{\sigma} \wedge \omega_i + g_{\sigma\nu}^{ij} \eta^{\sigma} \wedge \eta^{\nu} \wedge \omega_{ij},$$
(3)

where $g_{\sigma\nu}^{ij} = -g_{\sigma\nu}^{ji} = -g_{\nu\sigma}^{ij}$ are functions on W and ρ satisfies the following regularity condition on W^1

$$\det\left(\frac{\partial^2 \mathcal{L}}{\partial y_i^{\sigma} \partial y_j^{\nu}} - 4g_{\sigma\nu}^{ij}\right) \neq 0,$$

where (σ, i) labels rows and (ν, j) labels columns. The next statements were proved in [10,11].

Theorem 2.1. Let ρ be the regularization of λ as above (3) and $\alpha = d\rho$.

(1) Then every Hamilton extremal δ of $\alpha = d\rho$ is of the form $\delta = J^{1}\gamma$, where γ is an extremal of $E_{\lambda} = p_{1}d\rho$.

Download English Version:

https://daneshyari.com/en/article/4606373

Download Persian Version:

https://daneshyari.com/article/4606373

Daneshyari.com