

Available online at www.sciencedirect.com



DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS

Differential Geometry and its Applications 25 (2007) 322-334

www.elsevier.com/locate/difgeo

## Harmonic sections of Riemannian vector bundles, and metrics of Cheeger–Gromoll type <sup>☆</sup>

M. Benyounes<sup>a</sup>, E. Loubeau<sup>a</sup>, C.M. Wood<sup>b,\*</sup>

<sup>a</sup> Département de Mathématiques, Laboratoire CNRS UMR 6205, Université de Bretagne Occidentale, 6 Avenue Victor Le Gorgeu, CS 93837, 29238 Brest Cedex 3, France

<sup>b</sup> Department of Mathematics, University of York, Heslington, York Y010 5DD, UK

Received 27 May 2005; received in revised form 29 December 2005

Available online 14 December 2006

Communicated by L. Vanhecke

Dedicated to Professors J. Eells and J.H. Sampson

## Abstract

We study harmonic sections of a Riemannian vector bundle  $\mathcal{E} \to M$  when  $\mathcal{E}$  is equipped with a 2-parameter family of metrics  $h_{p,q}$  which includes both the Sasaki and Cheeger–Gromoll metrics. For every k > 0 there exists a unique p such that the harmonic sections of the radius-k sphere subbundle are harmonic sections of  $\mathcal{E}$  with respect to  $h_{p,q}$  for all q. In both compact and non-compact cases, Bernstein regions of the (p,q)-plane are identified, where the only harmonic sections of  $\mathcal{E}$  with respect to  $h_{p,q}$  are parallel. Examples are constructed of vector fields which are harmonic sections of  $\mathcal{E} = TM$  in the case where M is compact and has non-zero Euler characteristic.

© 2006 Elsevier B.V. All rights reserved.

MSC: 53C43; 53C07; 53C24; 58E15; 58E20; 58G30

Keywords: (p, q)-harmonic section; Sasaki metric; Cheeger–Gromoll metric; Strictly q-Riemannian section; Kato inequality; Bernstein region; Hopf vector field; Conformal gradient field

## 1. Introduction

The aim of this paper is to introduce new criteria for deciding which smooth vector fields on a smooth, connected (not necessarily compact) Riemannian manifold (M, g), or more generally which smooth sections  $\sigma$  of a smooth Riemannian vector bundle  $(\mathcal{E}, \langle, \rangle, \nabla) \rightarrow M$ , qualify as "better than the rest". In so doing we overcome some limitations of existing criteria, two of which we briefly review.

Corresponding author.

<sup>\*</sup> This research originated during the EDGE conference held at the Universidad de Granada in February 2004, and the authors would like to express their gratitude to the Departamento de Geometría y Topología for hosting and organizing the event.

*E-mail addresses:* Michele.Benyounes@univ-brest.fr (M. Benyounes), Eric.Loubeau@univ-brest.fr (E. Loubeau), cmw4@york.ac.uk (C.M. Wood).

<sup>0926-2245/\$ -</sup> see front matter © 2006 Elsevier B.V. All rights reserved. doi:10.1016/j.difgeo.2006.11.010

(1)  $\sigma$  is a harmonic section of  $\mathcal{E}$  [13,14]. Here one measures the vertical energy (or total bending [20]) of  $\sigma$ :

$$E^{\nu}(\sigma) = \frac{1}{2} \int_{M} |\nabla \sigma|^2 \operatorname{vol}(g), \qquad (1.1)$$

(assuming for convenience that M is compact; otherwise one works over relatively compact domains), and looks for critical points with respect to smooth variations through sections of  $\mathcal{E}$ . The Euler–Lagrange equations are linear:

$$\nabla^* \nabla \sigma = 0, \tag{1.2}$$

where  $\nabla^* \nabla$  is the *rough Laplacian*:

 $\nabla^* \nabla = -\operatorname{Trace} \nabla^2$ .

If *M* is compact then integration by parts shows that all harmonic sections of  $\mathcal{E}$  are parallel; therefore if the Euler class  $\chi(\mathcal{E}) \neq 0$  there are no non-trivial solutions. The same is true if *M* is non-compact, provided  $|\sigma|^2$  is a harmonic function (Lemma 3.4).

(2)  $|\sigma| = k$ , and  $\sigma$  is a harmonic section of the radius-k sphere bundle [22,24]. Here the functional (1.1) is restricted to sections of  $S\mathcal{E}(k) \to M$ , where:

$$S\mathcal{E}(k) = \{ e \in \mathcal{E} \colon |e| = k \},\$$

and this constraint causes the Euler-Lagrange equations to become non-linear:

$$\nabla^* \nabla \sigma = \frac{1}{k^2} |\nabla \sigma|^2 \sigma.$$
(1.3)

Solutions of (1.3) clearly include all parallel sections of length k (if any), but when  $\mathcal{E} = TM$  many additional solutions have been identified [1,8,9,17,19], and examined for stability [2–4,12,24]. However the theory is limited to bundles with  $\chi(\mathcal{E}) = 0$ .

Our new criteria remove the topological restriction  $\chi(\mathcal{E}) = 0$ , whilst retaining all solutions of the constrained variational problem (2). The idea is to obtain interesting non-linear equations, such as (1.3), by altering the background metric data, rather than introducing constraints. Note first that (1.1) is equivalent to:

$$E^{\nu}(\sigma) = \frac{1}{2} \int_{M} |d^{\nu}\sigma|^2 \operatorname{vol}(g),$$
(1.4)

where  $d^v \sigma$  is the vertical component of the differential  $d\sigma$  with respect to  $\nabla$ , and the norm in  $T\mathcal{E}$  is that of the *Sasaki metric h* on  $\mathcal{E}$  [18]. We study the functional (1.4) when *h* is generalized to a 2-parameter family of metrics  $h_{p,q}$  on  $\mathcal{E}$ , for which  $h_{0,0} = h$  and  $h_{1,1}$  is the *Cheeger–Gromoll metric* [7,15]. (Both the Sasaki and Cheeger–Gromoll metrics generalize in a natural way to vector bundles.) Other geometrically interesting metrics occur in this family; for example  $h_{2,0}$  is the stereographic metric.

The term "metric" is used somewhat informally. If  $q \ge 0$  then  $h_{p,q}$  is indeed a Riemannian metric. However if q < 0 then  $h_{p,q}$  has varying signature: it is Riemannian within a ball bundle of radius  $1/\sqrt{-q}$ , Lorentzian on the exterior, and positive semi-definite on the boundary. This behaviour is a manifestation of *Kato's inequality* [6]. A section whose image lies in the closure of this ball bundle is said to be *q*-Riemannian. In general, if  $\sigma$  is stationary for (1.4) with respect to  $h_{p,q}$  and smooth variations through sections of  $\mathcal{E}$  we say that  $\sigma$  is a (p, q)-harmonic section of  $\mathcal{E}$ . The Euler–Lagrange equations are derived in Section 3 (Theorem 3.6). In general they are nonlinear. However the parallel sections of  $\mathcal{E}$  are (p, q)-harmonic for all (p, q).

The  $h_{p,q}$  induce a vertically homothetic family of Riemannian metrics on  $S\mathcal{E}(k)$ , even when q < 0 and  $k > 1/\sqrt{-q}$ . Thus (p,q)-harmonic sections of  $S\mathcal{E}(k)$  are characterized by Eq. (1.3) for all (p,q), and may therefore be referred to simply as *harmonic sections of*  $S\mathcal{E}(k)$ . For bundles with  $\chi(\mathcal{E}) = 0$  we establish the following:

**Theorem A.** Suppose that  $\sigma$  has constant length k > 0. Then  $\sigma$  is a (p,q)-harmonic section of  $\mathcal{E}$  if and only if  $\sigma$  is parallel, except when  $p = 1 + 1/k^2$  in which case  $\sigma$  is a (p,q)-harmonic section of  $\mathcal{E}$  if and only if  $\sigma$  is a harmonic section of  $S\mathcal{E}(k)$ .

Download English Version:

https://daneshyari.com/en/article/4606695

Download Persian Version:

https://daneshyari.com/article/4606695

Daneshyari.com