

Available online at www.sciencedirect.com

DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS

Differential Geometry and its Applications 25 (2007) 322–334

www.elsevier.com/locate/difgeo

Harmonic sections of Riemannian vector bundles, and metrics of Cheeger–Gromoll type $*$

M. Benyounes^a, E. Loubeau^a, C.M. Wood^{b,*}

^a *Département de Mathématiques, Laboratoire CNRS UMR 6205, Université de Bretagne Occidentale, 6 Avenue Victor Le Gorgeu, CS 93837, 29238 Brest Cedex 3, France*

^b *Department of Mathematics, University of York, Heslington, York Y010 5DD, UK*

Received 27 May 2005; received in revised form 29 December 2005

Available online 14 December 2006

Communicated by L. Vanhecke

Dedicated to Professors J. Eells and J.H. Sampson

Abstract

We study harmonic sections of a Riemannian vector bundle $\mathcal{E} \to M$ when \mathcal{E} is equipped with a 2-parameter family of metrics $h_{p,q}$ which includes both the Sasaki and Cheeger–Gromoll metrics. For every $k > 0$ there exists a unique p such that the harmonic sections of the radius-*k* sphere subbundle are harmonic sections of E with respect to $h_{p,q}$ for all q. In both compact and noncompact cases, Bernstein regions of the (p, q) -plane are identified, where the only harmonic sections of $\mathcal E$ with respect to $h_{p,q}$ are parallel. Examples are constructed of vector fields which are harmonic sections of $\mathcal{E} = TM$ in the case where M is compact and has non-zero Euler characteristic.

© 2006 Elsevier B.V. All rights reserved.

MSC: 53C43; 53C07; 53C24; 58E15; 58E20; 58G30

Keywords: (p,q)-harmonic section; Sasaki metric; Cheeger–Gromoll metric; Strictly *q*-Riemannian section; Kato inequality; Bernstein region; Hopf vector field; Conformal gradient field

1. Introduction

The aim of this paper is to introduce new criteria for deciding which smooth vector fields on a smooth, connected (not necessarily compact) Riemannian manifold (M, g) , or more generally which smooth sections σ of a smooth Riemannian vector bundle $(\mathcal{E}, \langle, \rangle, \nabla) \to M$, qualify as "better than the rest". In so doing we overcome some limitations of existing criteria, two of which we briefly review.

 $*$ This research originated during the EDGE conference held at the Universidad de Granada in February 2004, and the authors would like to express their gratitude to the Departamento de Geometría y Topología for hosting and organizing the event.

Corresponding author.

E-mail addresses: Michele.Benyounes@univ-brest.fr (M. Benyounes), Eric.Loubeau@univ-brest.fr (E. Loubeau), cmw4@york.ac.uk (C.M. Wood).

^{0926-2245/\$ –} see front matter © 2006 Elsevier B.V. All rights reserved. [doi:10.1016/j.difgeo.2006.11.010](http://dx.doi.org/10.1016/j.difgeo.2006.11.010)

(1) *σ is a harmonic section of* E [\[13,14\].](#page--1-0) Here one measures the *vertical energy* (or *total bending* [\[20\]\)](#page--1-0) of *σ* :

$$
E^{\nu}(\sigma) = \frac{1}{2} \int_{M} |\nabla \sigma|^2 \operatorname{vol}(g),\tag{1.1}
$$

(assuming for convenience that *M* is compact; otherwise one works over relatively compact domains), and looks for critical points with respect to smooth variations through sections of \mathcal{E} . The Euler–Lagrange equations are linear:

$$
\nabla^* \nabla \sigma = 0,\tag{1.2}
$$

where ∇∗∇ is the *rough Laplacian*:

 $\nabla^* \nabla = -\text{Trace}\,\nabla^2$

If *M* is compact then integration by parts shows that all harmonic sections of $\mathcal E$ are parallel; therefore if the Euler class $\chi(\mathcal{E}) \neq 0$ there are no non-trivial solutions. The same is true if *M* is non-compact, provided $|\sigma|^2$ is a harmonic function [\(Lemma 3.4\)](#page--1-0).

(2) $|\sigma| = k$ *, and* σ *is a harmonic section of the radius-k sphere bundle* [\[22,24\].](#page--1-0) Here the functional (1.1) is restricted to sections of $S\mathcal{E}(k) \to M$, where:

$$
S\mathcal{E}(k) = \{e \in \mathcal{E} : |e| = k\},\
$$

and this constraint causes the Euler–Lagrange equations to become non-linear:

$$
\nabla^* \nabla \sigma = \frac{1}{k^2} |\nabla \sigma|^2 \sigma. \tag{1.3}
$$

Solutions of (1.3) clearly include all parallel sections of length *k* (if any), but when $\mathcal{E} = TM$ many additional solutions have been identified [\[1,8,9,17,19\],](#page--1-0) and examined for stability [\[2–4,12,24\].](#page--1-0) However the theory is limited to bundles with $\chi(\mathcal{E}) = 0$.

Our new criteria remove the topological restriction $\chi(\mathcal{E}) = 0$, whilst retaining all solutions of the constrained variational problem (2). The idea is to obtain interesting non-linear equations, such as (1.3), by altering the background metric data, rather than introducing constraints. Note first that (1.1) is equivalent to:

$$
E^v(\sigma) = \frac{1}{2} \int_M |d^v \sigma|^2 \operatorname{vol}(g),\tag{1.4}
$$

where $d^{\nu}\sigma$ is the vertical component of the differential $d\sigma$ with respect to ∇ , and the norm in $T\mathcal{E}$ is that of the *Sasaki metric h* on \mathcal{E} [\[18\].](#page--1-0) We study the functional (1.4) when *h* is generalized to a 2-parameter family of metrics $h_{p,q}$ on \mathcal{E} , for which $h_{0,0} = h$ and $h_{1,1}$ is the *Cheeger–Gromoll metric* [\[7,15\].](#page--1-0) (Both the Sasaki and Cheeger–Gromoll metrics generalize in a natural way to vector bundles.) Other geometrically interesting metrics occur in this family; for example $h_{2,0}$ is the stereographic metric.

The term "metric" is used somewhat informally. If $q \ge 0$ then $h_{p,q}$ is indeed a Riemannian metric. However if *q <* 0 then *hp,q* has varying signature: it is Riemannian within a ball bundle of radius 1*/* √−*^q*, Lorentzian on the exterior, and positive semi-definite on the boundary. This behaviour is a manifestation of *Kato's inequality* [\[6\].](#page--1-0) A section whose image lies in the closure of this ball bundle is said to be *q-Riemannian.* In general, if *σ* is stationary for (1.4) with respect to $h_{p,q}$ and smooth variations through sections of $\mathcal E$ we say that σ is a (p,q) *-harmonic section of* E. The Euler–Lagrange equations are derived in Section [3](#page--1-0) [\(Theorem 3.6\)](#page--1-0). In general they are nonlinear. However the parallel sections of $\mathcal E$ are (p, q) -harmonic for all (p, q) .

The *h_{p,q}* induce a vertically homothetic family of Riemannian metrics on *SE*(*k*), even when $q < 0$ and $k > 1/\sqrt{-q}$. Thus (p, q) -harmonic sections of $\mathcal{SE}(k)$ are characterized by Eq. (1.3) for all (p, q) , and may therefore be referred to simply as *harmonic sections of* $S\mathcal{E}(k)$. For bundles with $\chi(\mathcal{E}) = 0$ we establish the following:

Theorem A. *Suppose that* σ *has constant length* $k > 0$ *. Then* σ *is a* (p, q) *-harmonic section of* \mathcal{E} *if and only if* σ *is parallel, except when* $p = 1 + 1/k^2$ *in which case* σ *is a* (p, q)-harmonic section of $\mathcal E$ *if and only if* σ *is a harmonic section of* $S\mathcal{E}(k)$ *.*

Download English Version:

<https://daneshyari.com/en/article/4606695>

Download Persian Version:

<https://daneshyari.com/article/4606695>

[Daneshyari.com](https://daneshyari.com/)