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Abstract

Let f ∈ C[−1, 1] and denote by En( f ) its degree of approximation by algebraic polynomials of degree
< n. Assume that f changes its monotonicity, respectively, its convexity finitely many times, say s ≥ 2
times, in (−1, 1) and we know that for q = 1 or q = 2 and some 1 < α ≤ 2, such that qα ≠ 4, we have

En( f ) ≤ n−qα, n ≥ s + q + 1.

The purpose of this paper is to prove that the degree of comonotone, respectively, coconvex approximation,
of f , by algebraic polynomials of degree < n, n ≥ N , is also ≤ c(α, s)n−qα , where the constant N depends
only on the location of the extrema, respectively, inflection points in (−1, 1) and on α.

This answers, affirmatively, questions left open by the authors in papers with Kopotun (in Ukrainian
Math. J.) and with Vlasiuk (see the list of references).
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1. Introduction and main results

Let C[a, b], −1 ≤ a < b ≤ 1, denote the space of continuous functions on [a, b] equipped
with the usual uniform norm, ∥ f ∥[a,b] := maxa≤x≤b | f (x)|. When dealing with [−1, 1], we
suppress referring to the interval, namely, we denote ∥ f ∥ := ∥ f ∥[−1,1]. For Pn , the space of
algebraic polynomials of degree < n and f ∈ C[−1, 1], denote by

En( f ) := inf
pn∈Pn

∥ f − pn∥,

the degree of approximation of f by algebraic polynomials of degree < n.
Given s ≥ 1, denote by Ys , the set of all collections Ys = {yi }

s
i=1, of points yi , such that

ys+1 := −1 < ys < · · · < y1 < 1 =: y0. For such a collection we write f ∈ ∆(1)(Ys)

if f ∈ C[−1, 1] and (−1)i f is nondecreasing on [yi+1, yi ], 0 ≤ i ≤ s. Similarly, we write
f ∈ ∆(2)(Ys) if f ∈ C[−1, 1] and (−1)i f is convex on [yi+1, yi ], 0 ≤ i ≤ s.

For f ∈ ∆(q)(Ys), q ∈ {1, 2}, we denote by

E (q)
n ( f, Ys) := inf

Pn∈Pn∩∆(q)(Ys )
∥ f − Pn∥,

the degree of best comonotone, respectively, coconvex approximation of f relative to Ys .
Assuming that for some α > 0 and N ≥ 1,

nα En( f ) ≤ 1, n ≥ N , (1.1)

the answer to the following question was provided (see [3–5,9]).
If (1.1) holds for an f ∈ ∆(q)(Ys), is it possible to have constants c(q, α, s, N ) and N∗ such

that

nα E (q)
n ( f, Ys) ≤ c(q, α, s, N ), n ≥ N∗? (1.2)

Here N∗, if it exists, may depend on q, α, s and N , but may also depend on Ys or even on f .
It turns out that N∗ always exists and its dependence on the various parameters, in all cases, but
1 < α ≤ 2, N = s + 2, s ≥ 2, for the comonotone case (q = 1), was given in [5,9] and, in all
cases, but 2 < α ≤ 4, N = s + 3, s ≥ 3, for the coconvex case (q = 2), was given in [3,4].

O.V. Vlasiuk [10], has attempted to close the above gaps, but, regrettably, the proof of the
main lemma there is incorrect (see [11]). Our main results are the following.

Theorem 1.1. Given Ys ∈ Ys , s ≥ 2, and 1 < α ≤ 2. Then, there exist constants c(α, s) and
N∗(α, Ys), such that for all functions f ∈ ∆(1)(Ys) satisfying (1.1) with N = s + 2, (1.2) with
q = 1, holds.

Theorem 1.2. Given Ys ∈ Ys , s ≥ 3, and 2 < α < 4. Then, there exist constants c(α, s) and
N∗(α, Ys), such that for all functions f ∈ ∆(2)(Ys) satisfying (1.1) with N = s + 3, (1.2) with
q = 2, holds.

Remark 1.3. Note that this leaves open what happens in the coconvex case when α = 4,
N = s + 3 > 5.

In Section 2 we bring some auxiliary lemmas and in Section 3 we prove Theorems 1.1 and
1.2. Throughout the paper, k, r , s, q , i , j and n, are nonnegative integers, while α, a, b, h, t , u
and v, are real numbers.
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