Full length article

On multivariate discrete least squares

Yeon Ju Lee ${ }^{\text {a,* }}$, Charles A. Micchelli ${ }^{\text {b }}$, Jungho Yoon ${ }^{\text {c }}$
a Department of Mathematics, Korea University Sejong Campus, Sejong, 339-700, South Korea
${ }^{\mathrm{b}}$ Department of Mathematics and Statistics, SUNY Albany, Albany, 12222, USA
${ }^{\text {c }}$ Department of Mathematics, Ewha Womans University, Seoul, 120-750, South Korea

Received 25 May 2015; received in revised form 7 June 2016; accepted 13 July 2016
Available online 21 July 2016
Communicated by Robert Schaback

Abstract

For a positive integer $n \in \mathbb{N}$ we introduce the index set $\mathbb{N}_{n}:=\{1,2, \ldots, n\}$. Let $X:=\left\{x_{i}: i \in \mathbb{N}_{n}\right\}$ be a distinct set of vectors in $\mathbb{R}^{d}, Y:=\left\{y_{i}: i \in \mathbb{N}_{n}\right\}$ a prescribed data set of real numbers in \mathbb{R} and $\mathcal{F}:=\left\{f_{j}: j \in \mathbb{N}_{m}\right\}, m<n$, a given set of real valued continuous functions defined on some neighborhood \mathcal{O} of \mathbb{R}^{d} containing X. The discrete least squares problem determines a (generally unique) function $f=\sum_{j \in \mathbb{N}_{m}} c_{j}^{\star} f_{j} \in \operatorname{span} \mathcal{F}$ which minimizes the square of the $\ell^{2}-$ norm $$
\sum_{i \in \mathbb{N}_{n}}\left(\sum_{j \in \mathbb{N}_{m}} c_{j} f_{j}\left(x_{i}\right)-y_{i}\right)^{2}
$$ over all vectors $\left(c_{j}: j \in \mathbb{N}_{m}\right) \in \mathbb{R}^{m}$. The value of f at some $s \in \mathcal{O}$ may be viewed as the optimally predicted value (in the ℓ^{2}-sense) of all functions in span \mathcal{F} from the given data $X=\left\{x_{i}: i \in \mathbb{N}_{n}\right\}$ and $Y=\left\{y_{i}: i \in \mathbb{N}_{n}\right\}$.

We ask "What happens if the components of X and s are nearly the same". For example, when all these vectors are near the origin in \mathbb{R}^{d}. From a practical point of view this problem comes up in image analysis when we wish to obtain a new pixel value from nearby available pixel values as was done in [2], for a specified set of functions \mathcal{F}.

[^0]This problem was satisfactorily solved in the univariate case in Section 6 of Lee and Micchelli (2013). Here, we treat the significantly more difficult multivariate case using an approach recently provided in Yeon Ju Lee, Charles A. Micchelli and Jungho Yoon (2015).
(c) 2016 Published by Elsevier Inc.

Keywords: Collocation matrix; Wronskian; Multivariate least squares; Multivariate Maclaurin expansion

1. Background and problem formulation

Our goal in this paper is to extend the treatment of sensitivity analysis of univariate discrete least squares problems, as in presented in Section 6 of [3], to the multivariate case. In that paper, the method of analysis involved a careful use of the Cauchy Binet formula as described in the beginning of the book [1]. Here, we find the use of a finite Maclaurin expansion, as presented recently in [4] most appropriate. This method, joined with some matrix theoretic considerations, allows us to achieve our goal of extending the sensitivity analysis of the univariate discrete least squares presented in Section 6 of [3] to the multivariate case. The contribution of this paper is to analyze some aspects of the multivariate least squares problem discussed only in the univariate case in Section 6 of [3]. In this paper, we treat the multivariate case which is not done in [3]. Nevertheless, we shall, as often as possible, use the notation and setup described in [3] and, when necessary, modify it to follow the discussion in [4].

To start, we let $\mathbb{N}_{n}=\{1,2, \ldots, n\}$ where n is a positive integer in \mathbb{N}, the set of natural numbers and use \mathbb{Z}_{+}^{d} for the set of all nonnegative lattice vectors in \mathbb{R}^{d}. That is, $\alpha=\left(\alpha_{j}: j \in \mathbb{N}_{d}\right) \in \mathbb{Z}_{+}^{d}$ means α_{j}, for all $j \in \mathbb{N}_{d}$, is a nonnegative integer. Notationally, we write that $\alpha_{j} \in \mathbb{Z}_{+}$. Likewise, we set $|\alpha|_{1}:=\sum_{j \in \mathbb{N}_{d}} \alpha_{j}$ and $\alpha!:=\alpha_{1}!\cdots \alpha_{d}!$. Next, we introduce a partial ordering for lattice points in \mathbb{Z}_{+}^{d}. When $\alpha \neq \beta$, we say $\alpha \prec \beta$, that is, α comes before β, provided either $|\alpha|_{1}<|\beta|_{1}$, or $|\alpha|_{1}=|\beta|_{1}$ and there is integer $m \in \mathbb{N}_{d-1}$ such that $\alpha_{j}=\beta_{j}, j \in \mathbb{N}_{m}$ and while $\alpha_{m+1}<\beta_{m+1}$. Moreover, we use $\alpha \preceq \beta$ to mean that either $\alpha \prec \beta$ or $\alpha=\beta$. We let $\alpha^{[m]}$ be the m th lattice vector in \mathbb{Z}_{+}^{d} relative to our partial ordering and use the symbol \mathbb{B}_{m} for the set of all lattice vectors below or equal to $\alpha^{[m]}$ in the ordering " \leq ", that is,

$$
\mathbb{B}_{m}:=\left\{\alpha: \alpha \in \mathbb{Z}_{+}^{d}, \alpha \preceq \alpha^{[m]}\right\} .
$$

We are now ready to describe the multivariate discrete least squares problem which we consider in this paper. We specify a data set of n real numbers $Y=\left\{y_{\alpha}: \alpha \in \mathbb{B}_{n}\right\} \subset \mathbb{R}$ and data locations in \mathbb{R}^{d} given by the set $X=\left\{x_{\alpha}: \alpha \in \mathbb{B}_{n}\right\}$. That is, the scalar data value y_{α} corresponds to the data vector x_{α} for any $\alpha \in \mathbb{B}_{n}$. The set X determines the vector $\mathbf{x}=\left(x_{\alpha}: \alpha \in\right.$ $\left.\mathbb{B}_{n}\right) \in \mathbb{R}^{d} \times \cdots \times \mathbb{R}^{d},\left(n\right.$ products of copies of $\left.\mathbb{R}^{d}\right)$. For simplicity, we merely use $\mathbb{R}^{n d}$ for this product set. In addition, we have m real valued continuous function $\mathcal{F}=\left\{f_{\beta}: \beta \in \mathbb{B}_{m}\right\}$ defined on an open neighborhood \mathcal{O} of the origin in \mathbb{R}^{d} where m is assumed to be strictly smaller than n.

Our objective is to represent the data set Y everywhere as a function $f \in \operatorname{span} \mathcal{F}$ which deviates least at x_{α} from $y_{\alpha}, \alpha \in \mathbb{B}_{n}$, in the discrete least squares sense. Thus, if a typical element in $\operatorname{span} \mathcal{F}$ has the form

$$
f=\sum_{\beta \in \mathbb{B}_{m}} c_{\beta} f_{\beta}
$$

https://daneshyari.com/en/article/4606788

Download Persian Version:

https://daneshyari.com/article/4606788

Daneshyari.com

[^0]: * Corresponding author.

 E-mail address: leeyeonju08@korea.ac.kr (Y.J. Lee).

