



#### Available online at www.sciencedirect.com

### **ScienceDirect**

Journal of Approximation Theory

Journal of Approximation Theory 211 (2016) 85-93

www.elsevier.com/locate/jat

## Full length article

# Strong continuity on Hardy spaces

Jacek Dziubański<sup>a</sup>, Błażej Wróbel<sup>b,a,\*</sup>

<sup>a</sup> Instytut Matematyczny, Uniwersytet Wrocławski, pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland <sup>b</sup> Universität Bonn, Mathematical Institute, Endenicher Allee 60, D-53115 Bonn, Germany

Received 19 January 2016; received in revised form 1 June 2016; accepted 13 July 2016 Available online 22 July 2016

Communicated by Karlheinz Groechenig

#### **Abstract**

We prove the strong continuity of spectral multiplier operators associated with dilations of certain functions on the general Hardy space  $H_L^1$  introduced by Hofmann, Lu, Mitrea, Mitrea, Yan. Our results include the heat and Poisson semigroups as well as the group of imaginary powers. © 2016 Elsevier Inc. All rights reserved.

MSC: 42B30; 47D06; 47A60

Keywords: Hardy space; Strong continuity; Semigroup of linear operators

#### 1. Introduction

In the theory of semigroups of linear operators on Banach spaces the crucial assumption is that of strong continuity. One often encounters a situation where the semigroup  $T_t = e^{-tL}$  is initially defined on  $L^2(\Omega)$  and L is a non-negative self-adjoint operator. In this case the spectral theorem immediately gives the strong  $L^2(\Omega)$  continuity  $\lim_{t\to 0^+} \|T_t f - f\|_{L^2(\Omega)} = 0$ , for  $f \in L^2(\Omega)$ . Assume additionally that  $\{T_t\}_{t>0}$  extends to a locally bounded semigroup on  $L^p$ . More precisely, we impose that for each  $1 \le p < \infty$  there exists  $t_p > 0$  such that

E-mail addresses: jdziuban@math.uni.wroc.pl (J. Dziubański), blazej.wrobel@math.uni.wroc.pl (B. Wróbel).

<sup>\*</sup> Corresponding author at: Instytut Matematyczny, Uniwersytet Wrocławski, pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland

 $\|T_t\|_{L^p(\Omega)\to L^p(\Omega)} \le C_p, t \in [0,t_p]$ . Since weak and strong convergence coincide for semi-groups of operators (see e.g. [6, Theorem 5.8]), it is straightforward to see that  $T_t$  is strongly continuous on all  $L^p(\Omega)$ ,  $1 . Moreover, if we assume that <math>\{T_t\}_{t>0}$  is contractive on  $L^1(\Omega)$ , then it is also strongly continuous on  $L^1(\Omega)$ . Quite often the semigroup  $\{T_t\}_{t>0}$  may be also defined on function spaces other than  $L^p$ . For instance, if  $T_t = e^{t\Delta}$  is the classical heat semigroup on  $\mathbb{R}^d$ , then it also acts on the atomic Hardy spaces  $H^1_{at}$ . However, even in this case it is not obvious that the semigroup is strongly continuous on  $H^1_{at}$ .

In this paper we impose that  $\{T_t\}_{t>0}$  satisfies the so-called Davies–Gaffney estimates (see (2.3)), and that the underlying space  $\Omega$  is a space of homogeneous type in the sense of Coifman–Weiss [1]. Under these assumptions, as a corollary of our main result, we prove that  $e^{-tL}$  and  $e^{-t\sqrt{L}}$  are strongly continuous on the Hardy space  $H_L^1$ . This Hardy space was introduced by Hofmann, Lu, Mitrea, Mitrea, Yan in [8]. Our results are quite general, as there are many operators L satisfying (2.3), e.g. Laplace–Beltrami operators on complete Riemannian manifolds (see e.g. [7, Corollary 12.4]) or Schrödinger operators with non-negative potentials.

The literature on  $L^p$  spectral multipliers for operators satisfying Davies–Gaffney estimates is vast. However, as the  $L^p$  theory is not discussed in our paper, we do not provide detailed references on this subject. Instead we kindly refer the interested reader to consult e.g. [11] and references therein. There are also results for spectral multipliers on the Hardy space  $H_L^1$  (or more generally  $H_L^p$ ), see e.g. [3–5,9].

The methods we use are based on [5], in which the authors proved a Hörmander-type multiplier theorem on  $H_L^1$ . The result for semigroups (Corollary 3.2) is a consequence of Theorem 3.1, which treats dilations of more general multipliers than  $e^{-\lambda}$ . Finally, using Theorem 3.1 we also prove the strong  $H_L^1$  continuity of the group of imaginary powers  $\{L^{iu}\}_{u\in\mathbb{R}}$ , see Corollary 3.3.

#### 2. Preliminaries

Let  $(\Omega, d(x, y))$  be a metric space equipped with a positive measure  $\mu$ . We assume that  $(\Omega, d, \mu)$  is a space of homogeneous type in the sense of Coifman–Weiss [1], that is, there exists a constant C > 0 such that

$$\mu(B_d(x, 2t)) \le C\mu(B_d(x, t)) \quad \text{for every } x \in \Omega, \ t > 0,$$

where  $B_d(x,t) = \{y \in \Omega : d(x,y) < t\}$ . The condition (2.1) implies that there exist constants  $C_0 > 0$  and q > 0 such that

$$\mu(B_d(x,st)) \le C_0 s^q \mu(B_d(x,t)) \quad \text{for every } x \in \Omega, \ t > 0, \ s > 1.$$

In what follows we set  $n_0$  to be the infimum over q in (2.2).

Let  $\{e^{-tL}\}_{t>0}$  be a semigroup of linear operators on  $L^2(\Omega, d\mu)$  generated by -L. Here L is a non-negative, self-adjoint operator with domain  $\mathcal{D}(L)$ . For  $M \in \mathbb{N}$ , by  $\mathcal{D}(L^M)$  we mean the domain of  $L^M$  given by the spectral theorem. We assume additionally that L is injective on  $\mathcal{D}(L)$ . Throughout the paper we impose that  $T_t := e^{-tL}$  satisfies Davies–Gaffney estimates, that is,

$$|\langle T_t f_1, f_2 \rangle| \le C \exp\left(-\frac{\operatorname{dist}(U_1, U_2)^2}{ct}\right) \|f_1\|_{L^2(\Omega)} \|f_2\|_{L^2(\Omega)}$$
 (2.3)

for every  $f_i \in L^2(\Omega)$ , supp  $f_i \subset U_i$ ,  $i = 1, 2, U_i$  are open subsets of  $\Omega$ .

# Download English Version:

# https://daneshyari.com/en/article/4606789

Download Persian Version:

https://daneshyari.com/article/4606789

<u>Daneshyari.com</u>