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Abstract

We prove the strong continuity of spectral multiplier operators associated with dilations of certain
functions on the general Hardy space H1

L introduced by Hofmann, Lu, Mitrea, Mitrea, Yan. Our results
include the heat and Poisson semigroups as well as the group of imaginary powers.
c⃝ 2016 Elsevier Inc. All rights reserved.
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1. Introduction

In the theory of semigroups of linear operators on Banach spaces the crucial assumption is
that of strong continuity. One often encounters a situation where the semigroup Tt = e−t L is
initially defined on L2(Ω) and L is a non-negative self-adjoint operator. In this case the spec-
tral theorem immediately gives the strong L2(Ω) continuity limt→0+ ∥Tt f − f ∥L2(Ω) = 0,
for f ∈ L2(Ω). Assume additionally that {Tt }t>0 extends to a locally bounded semigroup on
L p. More precisely, we impose that for each 1 ≤ p < ∞ there exists tp > 0 such that
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∥Tt∥L p(Ω)→L p(Ω) ≤ C p, t ∈ [0, tp]. Since weak and strong convergence coincide for semi-
groups of operators (see e.g. [6, Theorem 5.8]), it is straightforward to see that Tt is strongly
continuous on all L p(Ω), 1 < p < ∞. Moreover, if we assume that {Tt }t>0 is contractive on
L1(Ω), then it is also strongly continuous on L1(Ω). Quite often the semigroup {Tt }t>0 may be
also defined on function spaces other than L p. For instance, if Tt = et∆ is the classical heat
semigroup on Rd , then it also acts on the atomic Hardy spaces H1

at . However, even in this case
it is not obvious that the semigroup is strongly continuous on H1

at .
In this paper we impose that {Tt }t>0 satisfies the so-called Davies–Gaffney estimates (see

(2.3)), and that the underlying space Ω is a space of homogeneous type in the sense of
Coifman–Weiss [1]. Under these assumptions, as a corollary of our main result, we prove that
e−t L and e−t

√
L are strongly continuous on the Hardy space H1

L . This Hardy space was intro-
duced by Hofmann, Lu, Mitrea, Mitrea, Yan in [8]. Our results are quite general, as there are
many operators L satisfying (2.3), e.g. Laplace–Beltrami operators on complete Riemannian
manifolds (see e.g. [7, Corollary 12.4]) or Schrödinger operators with non-negative potentials.

The literature on L p spectral multipliers for operators satisfying Davies–Gaffney estimates
is vast. However, as the L p theory is not discussed in our paper, we do not provide detailed
references on this subject. Instead we kindly refer the interested reader to consult e.g. [11] and
references therein. There are also results for spectral multipliers on the Hardy space H1

L (or more
generally H p

L ), see e.g. [3–5,9].
The methods we use are based on [5], in which the authors proved a Hörmander-type

multiplier theorem on H1
L . The result for semigroups (Corollary 3.2) is a consequence of

Theorem 3.1, which treats dilations of more general multipliers than e−λ. Finally, using
Theorem 3.1 we also prove the strong H1

L continuity of the group of imaginary powers {L iu
}u∈R,

see Corollary 3.3.

2. Preliminaries

Let (Ω , d(x, y)) be a metric space equipped with a positive measure µ. We assume that
(Ω , d, µ) is a space of homogeneous type in the sense of Coifman–Weiss [1], that is, there
exists a constant C > 0 such that

µ(Bd(x, 2t)) ≤ Cµ(Bd(x, t)) for every x ∈ Ω , t > 0, (2.1)

where Bd(x, t) = {y ∈ Ω : d(x, y) < t}. The condition (2.1) implies that there exist constants
C0 > 0 and q > 0 such that

µ(Bd(x, st)) ≤ C0sqµ(Bd(x, t)) for every x ∈ Ω , t > 0, s > 1. (2.2)

In what follows we set n0 to be the infimum over q in (2.2).
Let {e−t L

}t>0 be a semigroup of linear operators on L2(Ω , dµ) generated by −L . Here L
is a non-negative, self-adjoint operator with domain D(L). For M ∈ N, by D(L M ) we mean
the domain of L M given by the spectral theorem. We assume additionally that L is injective on
D(L). Throughout the paper we impose that Tt := e−t L satisfies Davies–Gaffney estimates, that
is,

|⟨Tt f1, f2⟩| ≤ C exp


−
dist (U1,U2)

2

ct


∥ f1∥L2(Ω)∥ f2∥L2(Ω) (2.3)

for every fi ∈ L2(Ω), supp fi ⊂ Ui , i = 1, 2, Ui are open subsets of Ω .
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