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Abstract

We prove sharp, two-sided bounds on sums of the form


k∈Nd
0\Da(T )

exp(−
d

j=1 a j k j ), where

Da(T ) := {k ∈ Nd
0 :

d
j=1 a j k j ≤ T } and a ∈ Rd

+
. These sums appear in the error analysis of tensor

product approximation, interpolation and integration of d-variate analytic functions. Examples are tensor
products of univariate Fourier–Legendre expansions (Beck et al., 2014) or interpolation and integration
rules at Leja points (Chkifa et al., 2013), (Narayan and Jakeman, 2014), (Nobile et al., 2014). Moreover,
we discuss the limit d → ∞, where we prove both, algebraic and sub-exponential upper bounds. As an
application we consider tensor products of Hardy spaces, where we study convergence rates of a certain
truncated Taylor series, as well as of interpolation and integration using Leja points.
c⃝ 2016 Elsevier Inc. All rights reserved.
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1. Introduction

Recently, the approximation, interpolation and integration of analytic functions have drawn a
lot of interest, especially in the area of uncertainty quantification [3,4,17,29]. Among the most
popular approaches are generalized sparse grids, which use tensor products of certain univari-
ate approximation schemes, like orthogonal polynomial expansions [6,16,23], Tschebyscheff
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interpolation [41,42], Gaussian and Clenshaw–Curtis quadrature [41,42], Taylor expansions
[16,17,55] or interpolation at Leja points [13,14,40,41]. For integration problems also special
quasi-Monte Carlo methods have been developed [21,22], which are able to achieve algebraic
rates of convergence O(N−r ) of arbitrarily high order.1 Moreover, there exist hybrid methods,
which allow unstructured point sets to project analytic functions onto a tensor product basis by
a least squares fitting approach [15,39]. Finally, there are kernel based methods which use or-
thogonal projections onto a certain basis of a given reproducing kernel Hilbert space of smooth
functions, see e.g. [29,46].

In this paper, we will study approximation algorithms that employ sparse tensor products of
univariate approximation schemes which on the one hand allow for exponential convergence
and on the other hand are maximally nested, i.e. on each level only one additional function(al)
evaluation is needed. This differs from classical approaches like, e.g., Clenshaw–Curtis
quadrature [27,43] or piecewise linear splines [10], where the number of point evaluations usually
doubles from level to level. The associated sparse grid or Smolyak methods were originally
tailored to function spaces with dominating, but finite mixed smoothness, e.g. H r

mix. They have
been thoroughly analyzed in this setting [10,24,49,57] and sharp upper and lower bounds are
available. However, analytic tensor product spaces and their approximability properties are not
that well understood yet, albeit there has been steady progress [5,6,33,34,37,42,45,55].

To this end, we consider the general problem of approximating a bounded linear operator
Id : H(d)

→ G between the d-fold tensor product of Banach spaces2 of univariate analytic
functions H(d)

= H1 ⊗ · · · ⊗ Hd and a normed linear space G. Often, Id is also referred to as
solution operator, see e.g. [56]. We assume that Id has a representation as an infinite series, i.e.

Id( f ) =


k∈Nd

0

∆k( f ), (1.1)

where ∆k : H(d)
→ G is also bounded and linear and requires the evaluation of exactly one

(additional) linear functional Lk : H(d)
→ R, i.e. ∆k( f ) = Lk( f )ϕk, where ϕk ∈ G.

It is natural to discretize Id by truncating the series (1.1), i.e.

AT ( f ) :=


k∈F (T )

∆k( f ) ≈ Id( f ), (1.2)

where F (T ) ⊂ Nd
0 is a finite index set parametrized by T ∈ R≥0 := {x ∈ R : x ≥ 0}, which

exhausts the whole Nd
0 as T → ∞ and fulfills the conditions3

k ≤ v ∧ v ∈ F (T ) ⇒ k ∈ F (T ). (1.3)

This means that F (T ) has no holes and that the approximation algorithm AT converges for every
f ∈ H(d) to Id , as T tends to infinity. Then, the error of AT can be bounded through

∥Id( f ) − AT ( f )∥G ≤


k∈Nd

0\F (T )

∥∆k( f )∥G ≤


k∈Nd

0\F (T )

∥∆k∥H(d)→G ∥ f ∥H(d) , (1.4)

1 Recently, also super-algebraic rates of convergence have been proven for analytic functions in [51].
2 Which has to be equipped with a suitable crossnorm, see e.g. [30].
3 The notation k ≤ v is short for the component-wise relation k j ≤ v j for all j ∈ {1, . . . , d}.
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