

Available online at www.sciencedirect.com

Journal of Approximation Theory

Journal of Approximation Theory 206 (2016) 48-67

www.elsevier.com/locate/jat

Full length article

On the existence of compacta of minimal capacity in the theory of rational approximation of multi-valued analytic functions

Viktor I. Buslaev, Sergey P. Suetin*

Steklov Mathematical Institute of Russian Academy of Sciences, Russia Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, Russia

Received 28 July 2014; received in revised form 16 June 2015; accepted 13 August 2015 Available online 9 October 2015

Communicated by Andrei Martinez-Finkelshtein

Dedicated to the memory of Andrei Aleksandrovich Gonchar and Herbert Stahl

Abstract

For an interval E = [a, b] on the real line, let μ be either the equilibrium measure, or the normalized Lebesgue measure of E, and let V^{μ} denote the associated logarithmic potential. In the present paper, we construct a function f which is analytic on E and possesses four branch points of second order outside of E such that the family of the admissible compacta of f has no minimizing elements with regard to the extremal theoretic-potential problem, in the external field equals $V^{-\mu}$. © 2015 Elsevier Inc. All rights reserved.

Keywords: Rational approximants; Padé approximation; Orthogonal polynomials; Distribution of poles; Convergence in capacity

1. Notations

Throughout the paper, we use the following notations.

M(K)—the space of all positive unit Borel measures μ with supports $S(\mu) = \text{supp } \mu \subset K$, where K is a compact set, $K \subset \overline{\mathbb{C}}$.

* Corresponding author. E-mail addresses: buslaev@mi.ras.ru (V.I. Buslaev), suetin@mi.ras.ru (S.P. Suetin).

http://dx.doi.org/10.1016/j.jat.2015.08.002

^{0021-9045/© 2015} Elsevier Inc. All rights reserved.

 δ_z —the Dirac measure at a point z.

For a finite set $E = \{e_1, \ldots, e_n\}$ of points (counted with their multiplicities) on $\overline{\mathbb{C}}$, we introduce the measure $\delta_E := \sum_{k=1}^n \delta_{e_k}$.

For a polynomial Q of degree n, we denote $\delta_Q := \delta_{\{z_1,...,z_n\}}$, where $\{z_1,...,z_n\}$ are the zeros of Q.

We define a spherically normalized potential \mathcal{V}^{μ} of the measure μ by

$$\mathcal{V}^{\mu}(z) = \int_{|t| \le 1} \log \frac{1}{|z - t|} d\mu(t) + \int_{|t| > 1} \log \frac{1}{|1 - z/t|} d\mu(t).$$
(1)

 $\operatorname{cap}_{\psi} K$ denotes the capacity of the compactum K in the presence of the harmonic external field ψ (the so-called ψ -weighted capacity). It is known [28] that $\operatorname{cap}_{\psi} K$ coincides with the transfinite diameter $d_{\psi} K$ of K in the field ψ , that is

$$d_{\psi}K := \lim_{n \to \infty} \left(\max_{z_1, \dots, z_n \in K} \prod_{1 \leq q < r \leq n} |z_q - z_r| e^{-\left(\psi(z_q) + \psi(z_r)\right)} \right)^{\frac{2}{(n-1)n}}.$$
 (2)

Let $\psi = \mathcal{V}^{-\mu}$, $S(\mu) \cap K = \emptyset$. For the sake of simplicity we write $\operatorname{cap}_{\mu} K := \operatorname{cap}_{\mathcal{V}^{-\mu}} K$.

Consider a sequence of compacta $\{K_n\}$, n = 1, 2, ... It is known [26] that if each K_n is a union of a finite number of continua (the number does not depend on the index *n*), such that $\lim_{n\to\infty} K_n = K$ (in the Hausdorff metric, see (41)–(42)) and if $S(\mu) \cap K = \emptyset$, then

$$\lim_{n \to \infty} \operatorname{cap}_{\mu} K_n = \operatorname{cap}_{\mu} K.$$
(3)

cap *K* denotes the standard capacity of the compactum $K \subset \mathbb{C}$ in the absence of an external field, i.e. when $\psi \equiv 0$. Since $\mathcal{V}^{\delta_{\infty}}(z) = 0$ for all $z \in \mathbb{C}$, then cap $K = \operatorname{cap}_{\delta_{\infty}} K$.

Given an open set Ω , we say that a sequence of functions $\{R_n\}_{n=1}^{\infty}$ converges in capacity to the function f on compact subsets of Ω , if for every $K \subset \Omega$ and each $\varepsilon > 0$

$$\lim_{n \to \infty} \operatorname{cap}\{z \in K : \left| (R_n - f)(z) \right| > \varepsilon\} = 0;$$
(4)

we use the notation

$$R_n \stackrel{\text{cap}}{\to} f, \quad z \in \Omega, \ n \to \infty.$$

The notation $\mu_n \stackrel{*}{\to} \mu$ is used for weak convergence of a sequence of measures μ_n to the measure μ as $n \to \infty$. Recall that

$$\mu_n \stackrel{*}{\to} \mu \quad \text{as } n \to \infty \iff \lim_{n \to \infty} \int f d\mu_n = \int f d\mu,$$
(5)

for each function f continuous on $\overline{\mathbb{C}}$. Also recall that from each sequence of unit measures one can extract a convergent subsequence.

We denote by $g_K(z, \zeta)$ Green's function of the complement $\overline{\mathbb{C}} \setminus K$ of the compactum K, with a pole at $\zeta \in \overline{\mathbb{C}} \setminus K$. (We let $g_K(z, \zeta) = 0$, if the points z and ζ are contained in two separate components of $\overline{\mathbb{C}} \setminus K$.)

 $G_K^{\mu}(z) = \int g_K(z, t) d\mu(t)$ is Green's potential of the measure μ whose support $S(\mu)$ does not intersect the compactum K.

Now let $S(\mu) \cap K = \emptyset$. Let us remind the notion of the balayage $\tilde{\mu}_K$ of a measure μ onto the compactum K. By definition, the balayage is the unique measure in the space M(K) for which

Download English Version:

https://daneshyari.com/en/article/4606844

Download Persian Version:

https://daneshyari.com/article/4606844

Daneshyari.com