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Abstract

We construct an orthonormal basis in L2(R) by integer translations of elements of a convergent sequence
of functions.
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1. Introduction

It is well-known [4] that a system of translates of a single function cannot be an orthonormal
basis, nor a Riesz one, in the space L2(R). Moreover [2], shifts of finitely many functions never
generate even a frame.

H. Shapiro posed a question [5]: does there exist an orthonormal basis obtained by translations
from a compact set of functions? In this note we give a positive answer to this question, in a
slightly stronger form:

Theorem. There exists a set of functions Φ = {φn(t)}, n ∈ N, in the space L2(R) such that
∥φn − 1[0,1]∥ → 0, and {φn(t − n)} is an orthonormal basis.
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To prove it, we introduce the following (n + 1)× (n + 1) matrix:
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where γn =
1

(2+
√

2) n
. It is easy to check that the matrix is orthogonal.

The main point here is that the upper left n × n submatrix of An is close to the identity matrix
while the lower right element is essentially less than 1.

2. Proof of theorem

Our construction below is inspired by Bourgain’s paper [1]. We will use the following

Lemma. Let Ψ = {ψn} be a set in a Hilbert space. For some α < 1, suppose there is a set Γ ,
dense in the unit sphere, such that every g ∈ Γ can be approximated, with an error less than α,
by a linear combination of vectors ψn . Then Ψ is complete.

Proof. If Ψ were not complete, then there would be a vector f , ∥ f ∥ = 1, orthogonal to span(Ψ).
Take g ∈ Γ with ∥ f −g∥ < 1−α, and find ψ ∈ span(Ψ) with ∥g−ψ∥ < α. Then ∥ f −ψ∥ < 1
which contradicts the choice of f . •

Let Γ = {gk}, k ∈ N, be a sequence of functions in L2(R) dense in the unit sphere S, with
two additional properties: gk = 0 a.e. outside [−k, k] and

∥gk 1[−k,−k+1]∥ > 0.

It can be made, e.g., by appropriate rearrangement of a countable dense in S set of compactly
supported functions, perturbing a kth one by ±

1
k 1[−k,−k+1], and normalizing.

The desired orthonormal basis will be built up inductively. Fix a sequence of integers
0 < n1 < n2 < · · ·.

Step 1. Take n = n1, and apply the matrix An to the orthonormal set of functions χ (1)1 = 1[1,2],

χ
(1)
2 = 1[2,3], . . . , χ

(1)
n = 1[n,n+1], and g(1) = g1:
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