

Available online at [www.sciencedirect.com](http://www.elsevier.com/locate/jat)

ScienceDirect

JOURNAL OF Approximation **Theory**

[Journal of Approximation Theory 202 \(2016\) 1–4](http://dx.doi.org/10.1016/j.jat.2015.10.005)

www.elsevier.com/locate/jat

Full length article

On orthonormal bases and translates

Victor Olevskii

Department of Mathematics, MGUPI, Moscow, Russia

Received 30 August 2015; received in revised form 30 September 2015; accepted 26 October 2015 Available online 4 November 2015

Communicated by Serguei Denissov

Abstract

We construct an orthonormal basis in $L_2(\mathbb{R})$ by integer translations of elements of a convergent sequence of functions.

⃝c 2015 Elsevier Inc. All rights reserved.

MSC: 42C30; 15B10

Keywords: Orthonormal basis; Orthogonal matrices; Translations of functions

1. Introduction

It is well-known [\[4\]](#page--1-0) that a system of translates of a single function cannot be an orthonormal basis, nor a Riesz one, in the space $L_2(\mathbb{R})$. Moreover [\[2\]](#page--1-1), shifts of finitely many functions never generate even a frame.

H. Shapiro posed a question [\[5\]](#page--1-2): does there exist an orthonormal basis obtained by translations from a compact set of functions? In this note we give a positive answer to this question, in a slightly stronger form:

Theorem. *There exists a set of functions* $\Phi = {\phi_n(t)}$ *, n* $\in \mathbb{N}$ *, in the space* $L_2(\mathbb{R})$ *such that* $\|\phi_n - \mathbf{1}_{[0,1]}\| \to 0$, and $\{\phi_n(t - n)\}\$ is an orthonormal basis.

E-mail address: [math-mgupi@ya.ru.](mailto:math-mgupi@ya.ru)

<http://dx.doi.org/10.1016/j.jat.2015.10.005> 0021-9045/© 2015 Elsevier Inc. All rights reserved.

To prove it, we introduce the following $(n + 1) \times (n + 1)$ matrix:

$$
A_n = \begin{pmatrix} 1 - \gamma_n & -\gamma_n & \cdots & -\gamma_n & \frac{1}{\sqrt{2n}} \\ -\gamma_n & 1 - \gamma_n & \cdots & -\gamma_n & \frac{1}{\sqrt{2n}} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ -\gamma_n & -\gamma_n & \cdots & 1 - \gamma_n & \frac{1}{\sqrt{2n}} \\ -\frac{1}{\sqrt{2n}} & -\frac{1}{\sqrt{2n}} & \cdots & -\frac{1}{\sqrt{2n}} & \frac{1}{\sqrt{2}} \end{pmatrix},
$$

where $\gamma_n = \frac{1}{(2+\mu)}$ $\frac{1}{(2+\sqrt{2})n}$. It is easy to check that the matrix is orthogonal.

The main point here is that the upper left $n \times n$ submatrix of A_n is close to the identity matrix while the lower right element is essentially less than 1.

2. Proof of theorem

Our construction below is inspired by Bourgain's paper [\[1\]](#page--1-3). We will use the following

Lemma. Let $\Psi = {\psi_n}$ be a set in a Hilbert space. For some $\alpha < 1$, suppose there is a set Γ , *dense in the unit sphere, such that every* $g \in \Gamma$ *can be approximated, with an error less than* α *, by a linear combination of vectors* ψ_n *. Then* Ψ *is complete.*

Proof. If Ψ were not complete, then there would be a vector f , $\|f\| = 1$, orthogonal to span(Ψ). Take $g \in \Gamma$ with $||f - g|| < 1 - \alpha$, and find $\psi \in \text{span}(\Psi)$ with $||g - \psi|| < \alpha$. Then $||f - \psi|| < 1$ which contradicts the choice of *f* . •

Let $\Gamma = \{g_k\}$, $k \in \mathbb{N}$, be a sequence of functions in $L_2(\mathbb{R})$ dense in the unit sphere *S*, with two additional properties: $g_k = 0$ a.e. outside $[-k, k]$ and

$$
\|g_k 1_{[-k,-k+1]}\| > 0.
$$

It can be made, e.g., by appropriate rearrangement of a countable dense in *S* set of compactly supported functions, perturbing a *k*th one by $\pm \frac{1}{k} \mathbf{1}_{[-k, -k+1]}$, and normalizing.

The desired orthonormal basis will be built up inductively. Fix a sequence of integers $0 < n_1 < n_2 < \cdots$

Step 1. Take $n = n_1$, and apply the matrix A_n to the orthonormal set of functions $\chi_1^{(1)} = \mathbf{1}_{[1,2]}$, $\chi_2^{(1)} = \mathbf{1}_{[2,3]}, \ldots, \chi_n^{(1)} = \mathbf{1}_{[n,n+1]},$ and $g^{(1)} = g_1$:

$$
A_n \begin{pmatrix} \chi_1^{(1)} \\ \vdots \\ \chi_n^{(1)} \\ g^{(1)} \end{pmatrix} = \begin{pmatrix} \psi_1^{(1)} \\ \vdots \\ \psi_n^{(1)} \\ h^{(1)} \end{pmatrix}.
$$

Download English Version:

<https://daneshyari.com/en/article/4606883>

Download Persian Version:

<https://daneshyari.com/article/4606883>

[Daneshyari.com](https://daneshyari.com)