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Abstract

In this note we continue the study initiated in Albiac and Wojtaszczyk (2006) of greedy-like bases in the
“isometric case”, i.e., in the case that the constants that arise in the context of greedy bases in their different
forms are 1. Here we settle the problem to find a satisfactory characterization of 1-quasi-greedy bases in
Banach spaces. We show that a semi-normalized basis in a Banach space is quasi-greedy with quasi-greedy
constant 1 if and only if it is unconditional with suppression-unconditional constant 1.
c⃝ 2015 Elsevier Inc. All rights reserved.
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1. Introduction and background

Let (X, ∥ · ∥) be an infinite-dimensional (real or complex) Banach space, and let B = (en)∞n=1
be a semi-normalized basis for X with biorthogonal functionals (e∗

n)∞n=1. The basis B is quasi-
greedy (see [10]) if for any x ∈ X the corresponding series expansion,

x =

∞
n=1

e∗
n(x)en
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converges in norm after reordering it so that the sequence (|e∗
n(x)|)∞n=1 is decreasing. Woj-

taszczyk showed [11] that a basis (en)∞n=1 of X is quasi-greedy if and only if the greedy operators
G N : X → X defined by

x =

∞
j=1

e∗

j (x)e j → G N (x) =


j∈ΛN (x)

e∗

j (x)e j ,

where ΛN (x) is any N -element set of indices such that

min{|e∗

j (x)|: j ∈ ΛN (x)} ≥ max{|e∗

j (x)|: j ∉ ΛN (x)},

are uniformly bounded, i.e.,

∥G N (x)∥ ≤ C∥x∥, x ∈ X, N ∈ N, (1)

for some constant C independent of x and N . Note that the operators (G N )∞N=1 are neither linear
nor continuous, so this is not just the Uniform Boundedness Principle!

Obviously, (1) implies that then there is a (possibly different) constant C̃ such that

∥x − G N (x)∥ ≤ C̃∥x∥, x ∈ X, N ∈ N. (2)

We will denote by Cw = Cw[B, X] the smallest constant such that (1) holds, and by Cℓ =

Cℓ[B, X] the least constant in (2). We will refer to Cℓ as the suppression quasi-greedy constant
of the basis. It is rather common (cf. [7,3]) and convenient to define the quasi-greedy constant of
the basis as

Cqg = Cqg[B, X] = max{Cw[B, X], Cℓ[B, X]}.

If B is a quasi-greedy basis and C is a constant such that Cqg ≤ C we will say that B is C-quasi-
greedy.

Recall also that a basis (en)∞n=1 in a Banach space X is unconditional if for any x ∈ X
the series


∞

n=1 e∗
n(x)en converges in norm to x regardless of the order in which we arrange

the terms. The property of being unconditional is easily seen to be equivalent to that of being
suppression unconditional, which means that the natural projections onto any subsequence of
the basis

PA(x) =


n∈A

e∗
n(x)en, A ⊂ N,

are uniformly bounded, i.e., there is a constant K such that for all x =


∞

n=1 e∗
n(x)en and all

A ⊂ N,
n∈A

e∗
n(x)en

 ≤ K

 ∞
n=1

e∗
n(x)en

 . (3)

The smallest K in (3) is the suppression unconditional constant of the basis, and will be denoted
by Ksu = Ksu[B, X]. Notice that

Ksu[B, X] = sup{∥PA∥: A ⊂ N is finite} = sup{∥PA∥: A ⊂ N is cofinite}.

If a basis B is unconditional and K is a constant such that Ksu ≤ K we will say that B is
K -suppression unconditional.
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