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Abstract

We consider a g-weighted L, approximation in the space of univariate functions f : R4 — R with
finite || f(’) W ||L,,- Lete =r—1/p+1/q and @ = o/ . Assuming that ¥ and w are non-increasing and the
quasi-norm ||| Ja is finite, we construct algorithms using function/derivatives evaluations at n points with
the worst case errors proportional to ||w||Ll/mn_""(l/”_l/")Jr . In addition we show that this bound is sharp;
in particular, if |lo| o = then the rate n~"t(1/P=1/9+ cannot be achieved. Our results generalize

known results for bounded domains such as [0, 1] and ¢ = ¢ = 1. We also provide a numerical illustration.
© 2015 Elsevier Inc. All rights reserved.
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1. Introduction

We study in this paper the approximation of univariate real-valued functions f : D — R
where the domain is D = R4 = [0, oo) and the error of approximation is measured in a
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o-weighted L, (semi-)norm,

1/q
I follz, = (/D |f (x) o(x)| dX> , 1 =<q=<o0.

Here o : D — R, is a nonnegative and measurable weight function. The restriction to D =
[0, 0o) is to simplify the notation only, since all the results can be easily extended to D being an
arbitrary interval including D = R.

We assume that approximation algorithms use function and/or derivatives values at n points,
and we study the worst case errors of such algorithms with respect to the unit balls of the
following spaces F = F(r, p, ¥). For given positive integer r, 1 < p < o0, and a positive
and measurable weight function ¢ : R4 — R, the space F' consists of functions with (locally)
absolutely continuous derivative £~ and

IfP%llL, < oo.

A special case of such a problem is the unweighted approximation on a compact interval
[0, T'], which corresponds to ¥ = 1 and o(x) = 1 for x € [0, T] and o(x) = 0 otherwise. It
follows from, e.g., [2,8,13,14] that the nth minimal worst case errors are then proportional to

7 =Yg y=r+A/p=1a)+  where x; = max (0, x). (D

Note that for p = r = 1 and ¢ = oo the errors do not converge to zero; therefore this case is
excluded from our considerations.

Doubly weighted approximation problems were first investigated in [16], see also [9-12].
Moreover, the spaces F (r, p, ¥) and the corresponding results were used to construct weighted
tensor product spaces of multivariate and oo-variate functions, see, e.g., [4,3,5,6,15,17].

The results of [16] were obtained under rather complicated assumptions. In the current paper,
we obtain more accurate results using simpler assumptions and deliver different algorithms from
those in [16]. Assumptions and results of this paper are rather comparable to those in [11], where
the weighted integration problem with » = 1, p = oo, ¥ = 1, and the weight o(x) = exp(—x)
was considered; see also [1,10,12]. We believe that our new algorithms are more suitable for
constructing Smolyak’s (often called Sparse Grid) algorithms for multivariate approximation
problems.

We now discuss the main results of the paper. Define

We assume that ¥y and w are monotonically non-increasing, and that

|WMm=émeM<m
+

Clearly, l0'/#(|§ = l|@l|L,, is the L1 /q quasi-norm of .
For given n > 1, let the points x,, ; fori = 1, ..., n be given by

e =1y
o (x)dx = —— lo"|IL,.
0 n

That is, x,; are chosen so that the integrals of w!/* between successive points are equal. We
prove that the algorithm based on piecewise Taylor polynomials of degree r — 1 at the points x,, ;
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