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Abstract

Several interesting formulas concerning finite Hilbert transform and logarithmic integrals are proved
with application determining equilibrium measures.
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1. Complex Hardy spaces and boundary functions

Recall that the Hilbert transform H f = f̃ of a function f ∈ L p (R) (1 ≤ p < ∞) is defined
by letting

H f (x) = f̃ (x) =
1
π

(p.v.)


∞

−∞

f (t)

x − t
· dt.

We use both notations H f and f̃ for the Hilbert transform of a function f . For example, the
Hilbert transform of the characteristic function χ(a,b) of the interval (a, b) is

χ̃(a,b) (x) =
1
π

· ln

 x − a

x − b

 .
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To compute the Hilbert transform of several functions we define the complex Hardy spaces
Hp (C+) where C+ = {z ∈ C : Im (z) > 0} and 1 ≤ p < ∞. More exactly, ϕ ∈ Hp (C+) [4] if
ϕ is analytic in C+ and

∥ϕ∥
p
p := sup

y>0


∞

−∞

|ϕ (x + iy)|p dx < ∞.

It is well known that if ϕ ∈ Hp (C+) then for almost every x ∈ R there is limy→0 ϕ (x + iy) =:

f (x)+i f̃ (x), where f, f̃ ∈ L p (R) if 1 < p < ∞. Note that f̃ (x) = Reϕ (x + i0) for f (x) =

−Imϕ (x + i0). Therefore, the Hilbert transform is bounded on L p (R) for 1 < p < ∞ [4] and
H (H f ) = − f for every f ∈ L p (R) with 1 < p < ∞. Moreover,

∞

−∞

f (x) g̃ (x) dx = −


∞

−∞

f̃ (x) g (x) dx

for f ∈ L p (R) and g ∈ Lq (R) with 1 < p < ∞ and 1
p +

1
q = 1. Replace g by χ(a,b) we have

1
π


∞

−∞

f (x) ln

 x − a

x − b

 dx = −

 b

a
f̃ (x) dx

for every f ∈ L p (R). For a compactly supported function f ∈ L p(R) we can define the
logarithmic integral

F (b) =
1
π


∞

−∞

f (x) ln
1

|x − b|
· dx .

Then

F (b) − F (a) =
1
π


∞

−∞

f (x) ln

 x − a

x − b

 dx = −

 b

a
f̃ (x) dx .

Hence, F is locally absolutely continuous with weak derivative − f̃ . Specially, we have

Theorem 1. If a function f ∈ L p (p > 1) is supported in a set E of finite disjoint compact
intervals and the logarithmic integral of f is constant in E then f̃ = 0 in E.

Let ϕ ∈ Hp (C+) and φ ∈ Hq (C+) with 1
p +

1
q ≤ 1. Then ϕφ ∈ Hr (C+) with 1

r =
1
p +

1
q so

we have

H


f g̃ + f̃ g


= f̃ g̃ − f g with f ∈ L p (R) and g ∈ Lq (R) . (1.1)

Finally, let a1 < a2 < · · · < a2ℓ,

E =

ℓ
k=1


a2k−1, a2k


and K (x) =

2ℓ
j=1


x − a j


.

Then K (x) ≤ 0 if and only if x ∈ E . Let

g (x) = gE (x) =


(−1)ℓ−k


|K (x)| if x ∈


a2k−1, a2k


0 otherwise.

(1.2)
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