

Available online at www.sciencedirect.com

Journal of Approximation Theory

Journal of Approximation Theory 200 (2015) 227-258

www.elsevier.com/locate/jat

Full length article

Notes on (s, t)-weak tractability: A refined classification of problems with (sub)exponential information complexity

Paweł Siedlecki^a, Markus Weimar^{b,*}

^a University of Warsaw, Faculty of Mathematics, Informatics and Mechanics, ul. Banacha 2, 02-097 Warszawa, Poland ^b Philipps-University Marburg, Faculty of Mathematics and Computer Science, Hans-Meerwein-Straße, Lahnberge, 35032 Marburg, Germany

> Received 26 November 2014; received in revised form 19 May 2015; accepted 28 July 2015 Available online 21 August 2015

> > Communicated by Amos Ron

Abstract

In the last 20 years a whole hierarchy of notions of tractability was proposed and analyzed by several authors. These notions are used to classify the computational hardness of continuous numerical problems $S = (S_d)_{d \in \mathbb{N}}$ in terms of the behavior of their information complexity $n(\varepsilon, S_d)$ as a function of the accuracy ε and the dimension d. By now a lot of effort was spent on either proving quantitative positive results (such as, e.g., the concrete dependence on ε and d within the well-established framework of polynomial tractability), or on qualitative negative results (which, e.g., state that a given problem suffers from the so-called curse of dimensionality). Although several weaker types of tractability were introduced recently, the theory of information-based complexity still lacks a notion which allows to quantify the exact (sub-/super-) exponential dependence of $n(\varepsilon, S_d)$ on both parameters ε and d. In this paper we present the notion of (s, t)-weak tractability which attempts to fill this gap. Within this new framework the parameters s and t are used to quantitatively refine the huge class of polynomially intractable problems. For linear, compact operators between Hilbert spaces we provide characterizations of (s, t)-weak tractability w.r.t. the worst case setting in terms of singular values. In addition, our new notion is illustrated by classical examples which recently

http://dx.doi.org/10.1016/j.jat.2015.07.007

^{*} Correspondence to: University of Siegen, Department of Mathematics, Walter-Flex-Straße 3, 57068 Siegen, Germany.

E-mail addresses: psiedlecki@mimuw.edu.pl (P. Siedlecki), weimar@mathematik.uni-marburg.de (M. Weimar).

^{0021-9045/© 2015} Elsevier Inc. All rights reserved.

attracted some attention. In detail, we study approximation problems between periodic Sobolev spaces and integration problems for classes of smooth functions. (© 2015 Elsevier Inc. All rights reserved.

MSC: 68Q25; 65Y20; 41A63

Keywords: Information-based complexity; Multivariate numerical problems; Hilbert spaces; Tractability; Approximation; Integration

1. Introduction

Let $S = (S_d)_{d \in \mathbb{N}}$ denote a multivariate numerical problem, i.e., a sequence of *solution operators* S_d , where each of them maps problem elements f from a subset of some normed (*source*) space F_d onto its solution $S_d(f)$ in some other (*target*) space G_d . In the following we refer to the parameter d as the *dimension* of the problem instance S_d . Typical examples cover approximation problems (where S_d is an embedding operator between spaces of d-variate functions) or integration problems (where $S_d(f)$ is defined as the integral of f over some d-dimensional domain).

We are interested in the computational hardness of *S* with respect to given classes of algorithms. This can be modeled by the *information complexity* $n(\varepsilon, S_d)$ which is defined as the minimal number of information operations that are needed to solve the *d*-dimensional problem with accuracy $\varepsilon > 0$:

$$n^{\text{abs}}(\varepsilon, S_d) \coloneqq \min\left\{n \in \mathbb{N}_0 \mid e(n, d) \le \varepsilon\right\}.$$
(1)

Therein the quantity e(n, d) is defined as the minimal error (measured w.r.t. a given *setting*) that can be achieved among all algorithms (within the class under consideration) that use at most $n \in \mathbb{N}_0$ information operations (degrees of freedom) on the input f to approximate the exact solution $S_d(f)$. The *initial error* of the *d*-dimensional problem instance S_d is denoted by

$$\varepsilon_d^{\text{init}} \coloneqq e(0, d), \quad d \in \mathbb{N}$$

Besides the information complexity with respect to the *absolute error criterion* as defined in (1) we also consider the respective quantity w.r.t. the *normalized error criterion*,

$$n^{\text{norm}}(\varepsilon, S_d) := \min\left\{ n \in \mathbb{N}_0 \mid e(n, d) \le \varepsilon \cdot \varepsilon_d^{\text{init}} \right\},\tag{2}$$

which measures how many pieces of information are needed to reduce the initial error by some factor $\varepsilon \in (0, 1]$. Typical classes of algorithms under consideration are, e.g., methods based on arbitrary linear functionals (information in Λ^{all}), or algorithms which are allowed to use function values (Λ^{std}) only. Moreover, one may stick to linear methods only, allow or prohibit adaption and/or randomization. Possible settings include the *worst case*, *average case*, *probabilistic*, and the *randomized setting*. For concrete definitions, explicit complexity results, and further references, see, e.g., the monographs [10–12,16], as well as the recent survey [18].

For the ease of presentation, in what follows, we mainly focus our attention on linear algorithms and their worst case errors among the unit ball $\mathcal{B}(F_d) := \{f \in F_d \mid ||f| \mid F_d|| \le 1\}$ of our source space F_d . That is, we set

$$e(n,d) := e^{\operatorname{wor}}(n,d;\Lambda) := \inf_{A_{n,d}} \sup_{f \in \mathcal{B}(F_d)} \left\| S_d(f) - A_{n,d}(f) \mid G_d \right\|,$$

Download English Version:

https://daneshyari.com/en/article/4606914

Download Persian Version:

https://daneshyari.com/article/4606914

Daneshyari.com