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To Dick Askey on the occasion of his birthday, with many positive wishes

Abstract

The problem to decide whether a given rational function in several variables is positive, in the sense
that all its Taylor coefficients are positive, goes back to Szegő as well as Askey and Gasper, who inspired
more recent work. It is well known that the diagonal coefficients of rational functions are D-finite. This
note is motivated by the observation that, for several of the rational functions whose positivity has received
special attention, the diagonal terms in fact have arithmetic significance and arise from differential equations
that have modular parametrization. In each of these cases, this allows us to conclude that the diagonal is
positive.

Further inspired by a result of Gillis, Reznick and Zeilberger, we investigate the relation between
positivity of a rational function and the positivity of its diagonal.
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1. Introduction

The question to decide whether a given rational function is positive, that is, whether its
Taylor coefficients are all positive, goes back to Szegő [25] and has since been investigated by
many authors including Askey and Gasper [3–5], Koornwinder [17], Ismail and Tamhankar [14],
Gillis, Reznick and Zeilberger [11], Kauers [15], Straub [24], Kauers and Zeilberger [16], Scott
and Sokal [23]. The interested reader will find a nice historical account in [23]. A particularly
interesting instance is the Askey–Gasper rational function

A(x, y, z) :=
1

1 − x − y − z + 4xyz
, (1)

whose positivity is proved in [5,11]. Generalizations to more than three variables are rarely
tractable, with the longstanding conjecture of the positivity of

1

1 − x − y − z − w +
2
3 (xy + xz + xw + yz + yw + zw)

, (2)

also referred to as the Lewy–Askey problem. Very recently, Scott and Sokal [23] succeeded in
proving the non-negativity of (2), both in an elementary way by an explicit Laplace-transform
formula and based on more general results on the basis generating polynomials of certain classes
of matroids. Note that by a result from [16] the positivity of (2) would follow from the positivity
of

D(x, y, z, w) :=
1

1 − x − y − z − w + 2(yzw + xzw + xyw + xyz) + 4xyzw
, (3)

which is still an open problem. In another direction, Gillis, Reznick and Zeilberger conjecture in
[11] that

1
1 − (x1 + x2 + · · · + xd) + d!x1x2 · · · xd

(4)

has non-negative coefficients for any d > 4 (this is false for d = 2, 3). It is further asserted
(though the proof is “omitted due to its length”) that, in order to show the non-negativity of
the rational functions in (4), it suffices to prove that their diagonal Taylor coefficients are non-
negative. Modulo this claim, the cases d = 4, 5, 6 were established by Kauers [15], who found
and examined recurrences for the respective diagonal coefficients.

The above claim from [11] suggests the following question. Here, we denote by ek(x1,

. . . , xd) the elementary symmetric polynomials defined by

d
j=1

(x + x j ) =

d
k=0

ek(x1, . . . , xd)xd−k . (5)

Question 1.1. Under what (natural) condition(s) is the positivity of a rational function h(x1,

. . . , xd) of the form

h(x1, . . . , xd) =
1d

k=0 ckek(x1, . . . , xd)
(6)

implied by the positivity of its diagonal? For example, would the positivity of h(x1, . . . , xd−1, 0)

be a sufficient condition?
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