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Abstract

In this paper, a common generalization of the Rogers–Ramanujan series and the generating function
for basis partitions is studied. This leads naturally to a sequence of polynomials, called BsP-polynomials.
In turn, the BsP-polynomials provide simultaneously a proof of the Rogers–Ramanujan identities and a
new, more rapidly converging series expansion for the basis partition generating function. Finally the basis
partitions are identified with a natural set of overpartitions.
c⃝ 2014 Elsevier Inc. All rights reserved.
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1. Introduction

The late Hansraj Gupta [8] introduced the concept of basis partitions. Basis partitions are
defined in terms of successive ranks [6] or the “rank vector” of a partition.

Namely, each partition, π , of a positive integer contains a largest square of nodes in its Ferrers
graph. This square is called the Durfee square. If the Durfee square has side d, we define the i th
rank ri of π (1 ≤ i ≤ d) as the difference between the number of nodes in the i th row of the
Ferrers graph of π and the number in the i th column. The rank vector for π is (r1, r2, . . . , rd).
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For example, if π is the partition 5 + 5 + 4 + 2 + 2 + 1, then it Ferrers graph is:
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• • • • •

• • • •

• •

• •

•

Its rank vector is (−1, 0, 1).
Gupta [8] showed that for every rank vector, r⃗ , there is a smallest integer that has a partition

with rank vector r⃗ , and that partition is unique. This partition is called the basis partition for r⃗ .
We let B(n) denote the number of basis partitions of n.

For example, the basis partition for (−1, 0, 1) is 4 + 4 + 4 + 2 + 1.
In [11], Nolan, Savage and Wilf showed that

∞
n=0

B(n)qn
=

∞
n=0

qn2
(−q; q)n

(q; q)n
, (1.1)

where

(A; q)n = (1 − A)(1 − Aq) · · · (1 − Aqn−1). (1.2)

Hirschhorn [10] gave a new proof of (1.1) and related basis partitions to the Rogers–
Ramanujan series from the first Rogers–Ramanujan identity [4, p. 113]:

∞
n=0

qn2

(q; q)n
=

1

(q; q5)∞(q4; q5)∞
. (1.3)

Our central object is to study

G(a, x; q) :=

∞
n=0

anqn2
(x; q)n

(q; q)n
. (1.4)

Following the work of Nola, Savage and Wilf [11] and of Hirschhorn [10], Alladi had in 2007
considered G(1, −zq; q) and had interpreted the power of z as representing the signature of a
basis partition (namely the number of different parts below the Durfee square); he then studied
basis partitions combinatorially [1] with emphasis on the signature.

Notice that if we set x = −q and set a = 1 in (1.4), we get the series in (1.1), and if we set
x = 0 and a = 1 we get the series in (1.3). We want to find an identity for G(a, x; q) which both
leads directly to the Rogers–Ramanujan identities and also provides a new representation of the
series in (1.1).

We shall prove

Theorem 1.

G(a, x; q)

=
1

(aq; q)∞


1 +

∞
n=1

(aq; q)n−1(1 − aq2n)(−1)nqn(3n−1)/2an Bn(a, x)

(q; q)n


(1.5)
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