Full length article

The Rogers-Ramanujan continued fraction and its level 13 analogue

Shaun Cooper*, Dongxi Ye
Institute of Natural and Mathematical Sciences, Massey University-Albany, Private Bag 102904, North Shore Mail Centre, Auckland, New Zealand

Received 18 July 2013; received in revised form 14 January 2014; accepted 22 January 2014 Available online 6 February 2014

Communicated by Special Issue Guest Editor
Dedicated to Richard Askey in celebration of his 80th birthday

Abstract

One of the properties of the Rogers-Ramanujan continued fraction is its representation as an infinite product given by $$
\imath(q)=q^{1 / 5} \prod_{j=1}^{\infty}\left(1-q^{j}\right)^{\left(\frac{j}{5}\right)}
$$ where $\left(\frac{j}{p}\right)$ is the Legendre symbol. In this work we study the level 13 function $$
R(q)=q \prod_{j=1}^{\infty}\left(1-q^{j}\right)^{\left(\frac{j}{13}\right)}
$$ and establish many properties analogous to those for the fifth power of the Rogers-Ramanujan continued fraction. Many of the properties extend to other levels ℓ for which $\ell-1$ divides 24 , and a brief account of these results is included. © 2014 Elsevier Inc. All rights reserved.

Keywords: Dedekind eta function; Eisenstein series; Hypergeometric function; Modular form; Pi; Ramanujan's theories of elliptic functions to alternative bases

[^0]
1. Introduction

The Rogers-Ramanujan continued fraction $\approx(q)$ is defined for $|q|<1$ by

$$
\imath(q)=\frac{q^{1 / 5}}{1+\frac{q}{1+\frac{q^{2}}{1+\frac{q^{3}}{1+\cdots}}}} .
$$

One of its main properties, due to Rogers [28], is the infinite product formula given by

$$
\imath(q)=q^{1 / 5} \prod_{j=1}^{\infty}\left(1-q^{j}\right)^{\left(\frac{j}{5}\right)}=q^{1 / 5} \prod_{j=1}^{\infty} \frac{\left(1-q^{5 j-4}\right)\left(1-q^{5 j-1}\right)}{\left(1-q^{5 j-3}\right)\left(1-q^{5 j-2}\right)}
$$

where $\left(\frac{j}{p}\right)$ is the Legendre symbol.
This work is about the level 13 analogue defined by

$$
\begin{aligned}
& R(q)=q \prod_{j=1}^{\infty}\left(1-q^{j}\right)^{\left(\frac{j}{13}\right)} \\
& \quad=q \prod_{j=1}^{\infty} \frac{\left(1-q^{13 j-12}\right)\left(1-q^{13 j-10}\right)\left(1-q^{13 j-9}\right)\left(1-q^{13 j-4}\right)\left(1-q^{13 j-3}\right)\left(1-q^{13 j-1}\right)}{\left(1-q^{13 j-11}\right)\left(1-q^{13 j-8}\right)\left(1-q^{13 j-7}\right)\left(1-q^{13 j-6}\right)\left(1-q^{13 j-5}\right)\left(1-q^{13 j-2}\right)} .
\end{aligned}
$$

Our goal is to show that although $R(q)$ does not have a simple expansion as a continued fraction, it has many other properties similar to the fifth power of the Rogers-Ramanujan continued fraction. Let us illustrate with two examples.

First, if $r(q)=s^{5}(q)$ then it is well-known that

$$
\frac{1}{r(q)}-11-r(q)=\frac{1}{q} \prod_{j=1}^{\infty} \frac{\left(1-q^{j}\right)^{6}}{\left(1-q^{5 j}\right)^{6}}
$$

Ramanujan found an analogous property for $R(q)$, namely

$$
\frac{1}{R(q)}-3-R(q)=\frac{1}{q} \prod_{j=1}^{\infty} \frac{\left(1-q^{j}\right)^{2}}{\left(1-q^{13 j}\right)^{2}}
$$

This is one of five identities in Entry 8(i) of Chapter 20 in Ramanujan's second notebook [26]. One of these identities is notable for being the last result in the 21 chapters of the notebook to be proved; see the paper by Evans [18] for more information.

Here is the second example. If $r=r(q)=\varepsilon^{5}(q)$, then it was shown in [9] that

$$
\begin{equation*}
q \frac{d}{d q} \log \left(\frac{r}{1-11 r-r^{2}}\right)=\sum_{n=0}^{\infty} a(n)\left(\frac{r\left(1-11 r-r^{2}\right)}{\left(1+r^{2}\right)^{2}}\right)^{n} \tag{1}
\end{equation*}
$$

where

$$
a(n)=\binom{2 n}{n} \sum_{j=0}^{n}\binom{n}{j}^{2}\binom{n+j}{j}
$$

https://daneshyari.com/en/article/4606977

Download Persian Version:
https://daneshyari.com/article/4606977

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: s.cooper@massey.ac.nz (S. Cooper), lawrencefrommath@gmail.com (D. Ye).

