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Abstract

One of the properties of the Rogers–Ramanujan continued fraction is its representation as an infinite
product given by

(q) = q1/5
∞
j=1

(1 − q j )


j
5



where


j
p


is the Legendre symbol. In this work we study the level 13 function

R(q) = q
∞
j=1

(1 − q j )


j

13



and establish many properties analogous to those for the fifth power of the Rogers–Ramanujan continued
fraction. Many of the properties extend to other levels ℓ for which ℓ − 1 divides 24, and a brief account of
these results is included.
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1. Introduction

The Rogers–Ramanujan continued fraction (q) is defined for |q| < 1 by

(q) =
q1/5

1 +
q

1 +
q2

1 +
q3

1 + · · ·

.

One of its main properties, due to Rogers [28], is the infinite product formula given by

(q) = q1/5
∞
j=1

(1 − q j )


j
5


= q1/5

∞
j=1

(1 − q5 j−4)(1 − q5 j−1)

(1 − q5 j−3)(1 − q5 j−2)

where


j
p


is the Legendre symbol.

This work is about the level 13 analogue defined by

R(q) = q
∞
j=1

(1 − q j )


j

13



= q
∞
j=1

(1 − q13 j−12)(1 − q13 j−10)(1 − q13 j−9)(1 − q13 j−4)(1 − q13 j−3)(1 − q13 j−1)

(1 − q13 j−11)(1 − q13 j−8)(1 − q13 j−7)(1 − q13 j−6)(1 − q13 j−5)(1 − q13 j−2)
.

Our goal is to show that although R(q) does not have a simple expansion as a continued fraction,
it has many other properties similar to the fifth power of the Rogers–Ramanujan continued
fraction. Let us illustrate with two examples.

First, if r(q) =
5(q) then it is well-known that

1
r(q)

− 11 − r(q) =
1
q

∞
j=1

(1 − q j )6

(1 − q5 j )6 .

Ramanujan found an analogous property for R(q), namely

1
R(q)

− 3 − R(q) =
1
q

∞
j=1

(1 − q j )2

(1 − q13 j )2 .

This is one of five identities in Entry 8(i) of Chapter 20 in Ramanujan’s second notebook [26].
One of these identities is notable for being the last result in the 21 chapters of the notebook to be
proved; see the paper by Evans [18] for more information.

Here is the second example. If r = r(q) =
5(q), then it was shown in [9] that
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where
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