Domain of convergence for a series of orthogonal polynomials

Hee Sun Jung ${ }^{\text {a,* }}$, Ryozi Sakai ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Mathematics Education, Sungkyunkwan University, Seoul 110-745, Republic of Korea
${ }^{\mathrm{b}}$ Department of Mathematics, Meijo University, Nagoya 468-8502, Japan
Received 31 December 2013; received in revised form 13 January 2015; accepted 13 February 2015
Available online 24 February 2015
Communicated by Doron S. Lubinsky

Abstract

Let $\left\{p_{k}\right\}_{k=0}^{\infty}$ be the orthogonal polynomials with certain exponential weights. In this paper, we prove that under certain mild conditions on exponential weights class, a series of the form $\sum b_{k} p_{k}$ converges uniformly and absolutely on compact subsets of an open strip in the complex plane, and diverges at every point outside the closure of this strip. (C) 2015 Elsevier Inc. All rights reserved.

Keywords: Series; Convergence; Orthogonal polynomials; Exponential weights

1. Introduction and main result

Let $\mathbb{R}^{+}=[0, \infty)$. A function $g: \mathbb{R}^{+} \rightarrow(0, \infty)$ is said to be quasi-increasing if there exists $C>0$ such that $g(x) \leq C g(y)$ for $0<x \leq y<\infty$. Similarly we may define the notation of a quasi-decreasing function. The notation $f(x) \sim g(x)$ means that there are positive constants C_{1}, C_{2} independent of x such that $C_{1} \leq f(x) / g(x) \leq C_{2}$ for all x. For any positive numbers $\left\{c_{n}\right\}_{n=1}^{\infty}$ and $\left\{d_{n}\right\}_{n=1}^{\infty}$ we define $c_{n} \sim d_{n}$. Similarly, the notation is used for sequences of functions. Throughout this paper C, C_{1}, C_{2}, \ldots denote positive constants independent of n, x, t or

[^0]polynomials $P(x)$ of degree at most n. We write $C=C(\lambda), C \neq C(\lambda)$ to indicate dependence on, or independence of, a parameter λ. The same symbol does not necessarily denote the same constant in different occurrences. We denote the class of polynomials with degree n by \mathcal{P}_{n}.

In this paper, we will consider the following class of exponential weights defined in [2, Definition 1.4].

Definition 1.1. Let $Q: \mathbb{R} \rightarrow \mathbb{R}^{+}$satisfy the following properties:
(a) $Q^{\prime}(x)$ is continuous in \mathbb{R}, with $Q(0)=0$.
(b) $Q^{\prime}(x)$ is non-decreasing in \mathbb{R}.
(c)

$$
\lim _{x \rightarrow+\infty} Q(x)=\lim _{x \rightarrow-\infty} Q(x)=\infty
$$

(d) The function

$$
T(x):=\frac{x Q^{\prime}(x)}{Q(x)}, \quad x \neq 0
$$

is quasi-increasing in $(0, \infty)$ and quasi-decreasing in $(-\infty, 0)$, with

$$
T(x) \geq \Lambda>1, \quad x \in \mathbb{R} \backslash\{0\}
$$

(e) There exists $\varepsilon_{0} \in(0,1)$ such that for $y \in \mathbb{R} \backslash\{0\}$,

$$
T(y) \sim T\left(y\left|1-\frac{\varepsilon_{0}}{T(y)}\right|\right)
$$

(f) Assume that there exist $C, \varepsilon_{1}>0$ such that

$$
\int_{x-\frac{\varepsilon_{1}|x|}{T(x)}}^{x} \frac{\left|Q^{\prime}(s)-Q^{\prime}(x)\right|}{|s-x|^{3 / 2}} d s \leq C\left|Q^{\prime}(x)\right| \sqrt{\frac{T(x)}{|x|}}, \quad x \in \mathbb{R} \backslash\{0\} .
$$

Then we write $w(x)=\exp (-Q(x)) \in \mathcal{F}\left(\operatorname{Lip} \frac{1}{2}\right)$.
From now on, we let $w=\exp (-Q) \in \mathcal{F}\left(\operatorname{Lip} \frac{1}{2}\right)$. Then we can construct the orthonormal polynomials $p_{n}(x)=p_{n}\left(w^{2}, x\right)$ of degree $n, n=0,1,2, \ldots$ for $w^{2}(x)$, that is,

$$
\int_{-\infty}^{\infty} p_{n}(x) p_{m}(x) w^{2}(x) d x=\delta_{m n} \quad(\text { Kronecker delta })
$$

In this paper, we prove that under certain mild conditions on $w=\exp (-Q) \in \mathcal{F}\left(\operatorname{Lip} \frac{1}{2}\right)$, a series of the form $\sum b_{k} p_{k}$ converges uniformly and absolutely on compact subsets of an open strip in the complex plane, and diverges at every point outside the closure of this strip.

The numbers $a_{-t}<0<a_{t}, t>0$ are uniquely determined by the following equations

$$
\begin{align*}
& t=\frac{1}{\pi} \int_{a_{-t}}^{a_{t}} \frac{x Q^{\prime}(x)}{\sqrt{\left(x-a_{-t}\right)\left(a_{t}-x\right)}} d x \tag{1.1}\\
& 0=\frac{1}{\pi} \int_{a_{-t}}^{a_{t}} \frac{Q^{\prime}(x)}{\sqrt{\left(x-a_{-t}\right)\left(a_{t}-x\right)}} d x
\end{align*}
$$

Then we see that a_{t} is an increasing function of $t \in \mathbb{R}$, with

$$
\lim _{t \rightarrow-\infty} a_{t}=-\infty ; \quad \lim _{t \rightarrow \infty} a_{t}=\infty
$$

https://daneshyari.com/en/article/4607005

Download Persian Version:
https://daneshyari.com/article/4607005

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: hsun90@skku.edu (H.S. Jung), ryozi@crest.ocn.ne.jp (R. Sakai).

