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Abstract

We obtain the asymptotic order of the operator norm of the hyperinterpolation operator on the unit ball

Bd , d ≥ 2 with respect to the measure bd,µ(1− | x |
2)µ−1/2dx, µ ≥ 0, where bd,µ =

 
Bd (1− |

x |
2)µ−1/2dx

−1
.
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1. Introduction

Hyperinterpolation of multivariate continuous functions over compact subsets or manifolds
was originally introduced by Sloan (see [15]). It is a discretized orthogonal projection on poly-
nomial subspaces, which provides an approximation method more general than the polynomial
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interpolation. Though the idea is very general and flexible, the problem in some sense is easier
than the multivariate polynomial interpolation. In recent years, hyperinterpolation has attracted
much interest, and a great number of interesting results have been obtained (see [1–4,7,11,8,9,5,
13–17,20–22]).

This paper is devoted to studying the operator norm of a hyperinterpolation operator on the
unit ball Bd

= {x ∈ Rd
| |x | ≤ 1} with respect to the measure Wµ(x)dx , where Wµ(x) =

bd,µ(1 − |x |
2)µ−1/2, µ ≥ 0 is the classical Jacobi weight on Bd , bd,µ =


Bd (1 −

|x |
2)µ−1/2dx

−1. We denote by Π d
n the subspace of polynomials in d variables with total degree

≤ n. Let Sn be the orthogonal projection from L2(Bd , Wµ(x)dx) onto Π d
n , i.e.,

Sn( f )(x) =


Bd

f (y)En(x, y)Wµ(y)dy, (1.1)

where En(x, y) is the reproducing kernel for Π d
n . We note that En(x, y) satisfies the following

properties:

(1) For any x, y ∈ Bd , En(x, y) = En(y, x);
(2) For any fixed y ∈ Bd , En(·, y) ∈ Π d

n ;
(3) For any P ∈ Π d

n and x ∈ Bd , P(x) = Sn(P)(x) = ⟨P, En(·, x)⟩,

where ⟨ f, g⟩ =


Bd f (x)g(x)Wµ(x)dx is the inner product in L2(Bd , Wµ(x)dx).
For n ≥ 1, we assume that Qn( f ) :=


ω∈Λn

λn,ω f (ω) is a positive quadrature formula on
Bd which is exact for Π d

2n , i.e., λn,ω > 0 for any ω ∈ Λn , and for all P ∈ Π d
2n ,

Bd
P(x)Wµ(x)dx = Qn(P) =


ω∈Λn

λn,ω P(ω), (1.2)

where Λn is a finite subset of Bd .
The hyperinterpolation operator Ln on Bd is defined by

Ln( f )(x) =


ω∈Λn

λn,ω f (ω)En(x, ω), f ∈ C(Bd). (1.3)

Since for any p ∈ Π d
n , p(·)En(x, ·) ∈ Π d

2n for arbitrary fixed x ∈ Bd , by (1.2) we get

p(x) = ⟨p, En(·, x)⟩ =


Bd

p(y)En(x, y)Wµ(y)dy

=


ω∈Λn

λn,ω p(ω)En(x, ω) = Ln(p)(x).

This implies that the hyperinterpolation operator Ln is a projection onto Π d
n , i.e., Ln is a bounded

linear operator on C(Bd) satisfying that L2
n = Ln and the range of Ln is Π d

n . For a linear operator
L on C(Bd), the operator norm ∥L∥ of L is given by

∥L∥ := sup{∥L f ∥ | f ∈ C(Bd), ∥ f ∥ ≤ 1},

where ∥ · ∥ is the uniform norm.
In [8], Hansen, Atkinson, and Chien investigated the hyperinterpolation operator Ln on B2

with µ = 1/2 based on a particular positive quadrature formula and obtained that
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