

Available online at www.sciencedirect.com

Journal of Approximation Theory

Journal of Approximation Theory 190 (2015) 73-90

www.elsevier.com/locate/jat

Full length article

Nuttall's theorem with analytic weights on algebraic S-contours

Maxim L. Yattselev

Department of Mathematical Sciences, Indiana University-Purdue University Indianapolis, 402 North Blackford Street, Indianapolis, IN 46202, United States

Received 1 October 2013; received in revised form 20 October 2014; accepted 25 October 2014 Available online 7 November 2014

Communicated by Spec.Issue Guest Editor

Dedicated to the memories of Herbert Stahl, brilliant mathematician and a kind friend, and Andrei Alexandrovich Gonchar, great visionary and a wonderful teacher

Abstract

Given a function f holomorphic at infinity, the *n*th diagonal Padé approximant to f, denoted by $[n/n]_f$, is a rational function of type (n, n) that has the highest order of contact with f at infinity. Nuttall's theorem provides an asymptotic formula for the error of approximation $f - [n/n]_f$ in the case where f is the Cauchy integral of a smooth density with respect to the arcsine distribution on [-1, 1]. In this note, Nuttall's theorem is extended to Cauchy integrals of analytic densities on the so-called algebraic S-contours (in the sense of Nuttall and Stahl).

© 2014 Elsevier Inc. All rights reserved.

MSC: 42C05; 41A20; 41A21

Keywords: Padé approximation; Orthogonal polynomials; Non-Hermitian orthogonality; Strong asymptotics; S-contours; Matrix Riemann–Hilbert approach

E-mail address: maxyatts@math.iupui.edu.

http://dx.doi.org/10.1016/j.jat.2014.10.015 0021-9045/© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Let

$$f(z) = \sum_{k\ge 0} f_k z^{-k} \tag{1}$$

be a convergent power series. A diagonal Padé approximant to f at infinity is a rational function that has the highest order of contact with f at infinity [18,5]. More precisely, let (P_n, Q_n) be a pair of polynomials, each of degree at most n, satisfying

$$R_n(z) := \left(Q_n f - P_n\right)(z) = O\left(1/z^{n+1}\right) \quad \text{as } z \to \infty.$$
(2)

It is not hard to verify that the above relation can be equivalently written as a linear system in terms of the Laurent coefficients of f, P_n , and Q_n with one more unknown than equations. Therefore the system is always solvable and no solution of it can be such that $Q_n \equiv 0$ (we may thus assume that Q_n is monic). In general, a solution of (2) is not unique. However, if (P_n, Q_n) and $(\tilde{P}_n, \tilde{Q}_n)$ are two distinct solutions, then $P_n \tilde{Q}_n - \tilde{P}_n Q_n \equiv 0$ since this difference must behave like O(1/z) near the point at infinity as easily follows from (2). Thus, each solution of (2) is of the form (LP_n, LQ_n) , where (P_n, Q_n) is the unique solution of minimal degree. Hereafter, (P_n, Q_n) will always stand for this unique pair of polynomials. A *diagonal Padé approximant* to f of type (n, n), denoted by $[n/n]_f$, is defined as $[n/n]_f := P_n/Q_n$.

We say that a function f of the form (1) belongs to the class S if it has a meromorphic continuation along any arc originating at infinity that belongs to $\mathbb{C} \setminus E_f$, $cp(E_f) = 0$, and there are points in $\mathbb{C} \setminus E_f$ to which f possesses distinct continuations.¹ Given $f \in S$, a compact set K is called *admissible* if $\overline{\mathbb{C}} \setminus K$ is connected and f has a meromorphic and single-valued extension there. The following theorems summarize one of the fundamental contributions of Herbert Stahl to complex approximation theory [21–24].

Theorem (*Stahl*). Given $f \in S$, there exists the unique admissible compact Δ_f such that $\operatorname{cp}(\Delta_f) \leq \operatorname{cp}(K)$ for any admissible compact K and $\Delta_f \subseteq K$ for any admissible K satisfying $\operatorname{cp}(\Delta_f) = \operatorname{cp}(K)$. Furthermore, Padé approximants $[n/n]_f$ converge to f in logarithmic capacity in $D_f := \overline{\mathbb{C}} \setminus \Delta_f$. The domain D_f is optimal in the sense that the convergence does not hold in any other domain D such that $D \setminus D_f \neq \emptyset$.

The minimal capacity set Δ_f , the boundary of the extremal domain D_f , has a rather special structure.

Theorem (Stahl). It holds that

$$\Delta_f = E_0 \cup E_1 \cup \bigcup \Delta_j,$$

where $E_0 \subseteq E_f$, E_1 consists of isolated points to which f has unrestricted continuations from the point at infinity leading to at least two distinct function elements, and Δ_j are open analytic arcs.

Moreover, the set Δ_f possesses Stahl's symmetry property.

¹ $cp(\cdot)$ stands for logarithmic capacity [20].

Download English Version:

https://daneshyari.com/en/article/4607040

Download Persian Version:

https://daneshyari.com/article/4607040

Daneshyari.com